Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 10: 466, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057577

RESUMEN

Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.

2.
Plant Physiol ; 168(3): 1013-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26025051

RESUMEN

Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Motivos de Nucleótidos/genética , Proteínas del Grupo Polycomb/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/química , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Pleiotropía Genética , Histonas/metabolismo , Lisina/metabolismo , Metilación , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
3.
Plant Cell ; 26(4): 1746-1763, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24748042

RESUMEN

Plant BZR1-BAM transcription factors contain a ß-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors.

4.
PLoS One ; 8(10): e75177, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146751

RESUMEN

DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Automatización de Laboratorios , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , ADN/genética , Ensayo de Inmunoadsorción Enzimática/instrumentación , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , Factores de Transcripción/genética
5.
Nucleic Acids Res ; 41(21): 9764-78, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23975197

RESUMEN

WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the 'TTGACY' W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA-protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
6.
BMC Plant Biol ; 10: 285, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21176196

RESUMEN

BACKGROUND: Throughout their lives plants produce new organs from groups of pluripotent cells called meristems, located at the tips of the shoot and the root. The size of the shoot meristem is tightly controlled by a feedback loop, which involves the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA (CLV) proteins. This regulatory circuit is further fine-tuned by morphogenic signals such as hormones and sugars. RESULTS: Here we show that a family of four plant-specific proteins, encoded by the FANTASTIC FOUR (FAF) genes, has the potential to regulate shoot meristem size in Arabidopsis thaliana. FAF2 and FAF4 are expressed in the centre of the shoot meristem, overlapping with the site of WUS expression. Consistent with a regulatory interaction between the FAF gene family and WUS, our experiments indicate that the FAFs can repress WUS, which ultimately leads to an arrest of meristem activity in FAF overexpressing lines. The finding that meristematic expression of FAF2 and FAF4 is under negative control by CLV3 further supports the hypothesis that the FAFs are modulators of the genetic circuit that regulates the meristem. CONCLUSION: This study reports the initial characterization of the Arabidopsis thaliana FAF gene family. Our data indicate that the FAF genes form a plant specific gene family, the members of which have the potential to regulate the size of the shoot meristem by modulating the CLV3-WUS feedback loop.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Meristema/genética , Brotes de la Planta/genética , Proteínas Represoras/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/clasificación , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/ultraestructura , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo
7.
Plant Methods ; 6: 25, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21108821

RESUMEN

BACKGROUND: About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. RESULTS: We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI)-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. CONCLUSIONS: We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA sequence can be performed via this method. The DPI-ELISA is cost efficient, less time-consuming than other methods and provides a qualitative and quantitative readout. The presented DPI-ELISA protocol is accompanied by advice on trouble-shooting, which will enable scientists to rapidly establish this versatile and easy to use method in their laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...