Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 270: 116354, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554474

RESUMEN

Malaria is a devastating disease that causes significant morbidity worldwide. The development of new antimalarial chemotypes is urgently needed because of the emergence of resistance to frontline therapies. Independent phenotypic screening campaigns against the Plasmodium asexual parasite, including our own, identified the aryl amino acetamide hit scaffold. In a prior study, we identified the STAR-related lipid transfer protein (PfSTART1) as the molecular target of this antimalarial chemotype. In this study, we combined structural elements from the different aryl acetamide hit subtypes and explored the structure-activity relationship. It was shown that the inclusion of an endocyclic nitrogen, to generate the tool compound WJM-715, improved aqueous solubility and modestly improved metabolic stability in rat hepatocytes. Metabolic stability in human liver microsomes remains a challenge for future development of the aryl acetamide class, which was underscored by modest systemic exposure and a short half-life in mice. The optimized aryl acetamide analogs were cross resistant to parasites with mutations in PfSTART1, but not to other drug-resistant mutations, and showed potent binding to recombinant PfSTART1 by biophysical analysis, further supporting PfSTART1 as the likely molecular target. The optimized aryl acetamide analogue, WJM-715 will be a useful tool for further investigating the druggability of PfSTART1 across the lifecycle of the malaria parasite.


Asunto(s)
Antimaláricos , Proteínas Portadoras , Malaria Falciparum , Malaria , Ratas , Ratones , Humanos , Animales , Antimaláricos/química , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Acetamidas/farmacología , Lípidos
2.
ACS Infect Dis ; 9(3): 668-691, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36853190

RESUMEN

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the P. falciparum asexual parasite and identified the 7-N-substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency. The optimized analog WJM228 (17) showed robust metabolic stability in vitro, although the aqueous solubility was limited. Forward genetic resistance studies uncovered that WJM228 targets the Qo site of cytochrome b (cyt b), an important component of the mitochondrial electron transport chain (ETC) that is essential for pyrimidine biosynthesis and an established antimalarial target. Profiling against drug-resistant parasites confirmed that WJM228 confers resistance to the Qo site but not Qi site mutations, and in a biosensor assay, it was shown to impact the ETC via inhibition of cyt b. Consistent with other cyt b targeted antimalarials, WJM228 prevented pre-erythrocytic parasite and male gamete development and reduced asexual parasitemia in a P. berghei mouse model of malaria. Correcting the limited aqueous solubility and the high susceptibility to cyt b Qo site resistant parasites found in the clinic will be major obstacles in the future development of the 3-oxadiazole quinolone antimalarial class.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Quinolonas , Animales , Ratones , Antimaláricos/farmacología , Citocromos b , Antagonistas del Ácido Fólico/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum , Quinolonas/farmacología
3.
J Med Chem ; 66(5): 3540-3565, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36812492

RESUMEN

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Homeostasis , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología
4.
Am J Obstet Gynecol ; 227(6): 880.e1-880.e11, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35863457

RESUMEN

BACKGROUND: Recurrent vulvovaginal candidiasis affects nearly 138 million women globally each year. In the United States, fluconazole is considered the standard of care for acute vulvovaginal candidiasis, but until recently there was no US Food and Drug Administration-approved drug for the treatment of recurrent vulvovaginal candidiasis. Oteseconazole is a novel oral selective inhibitor of fungal lanosterol demethylase (sterol 14α-demethylase cytochrome P450, an enzyme required for fungal growth) approved for the treatment of recurrent vulvovaginal candidiasis. OBJECTIVE: This study was conducted to evaluate the efficacy and safety of oral oteseconazole (VT-1161) in the prevention of recurrent culture-verified acute vulvovaginal candidiasis episodes through 50 weeks in participants with recurrent vulvovaginal candidiasis and to compare the efficacy of oteseconazole and fluconazole in the treatment of the presenting acute vulvovaginal candidiasis episode. STUDY DESIGN: Women and postmenarcheal girls aged ≥12 years with a history of recurrent vulvovaginal candidiasis (N=219) were enrolled at 38 US sites. Eligible participants presenting with an active vulvovaginal candidiasis infection entered an induction phase in which they were randomly assigned 2:1 to receive 600 mg oral oteseconazole on day 1 and 450 mg on day 2, with matching placebo capsules, or to 3 sequential 150-mg oral doses (once every 72 hours) of fluconazole, with matching placebo capsules. Following the 2-week induction phase, the 185 participants with resolved acute vulvovaginal candidiasis infection (a clinical signs and symptoms score of <3) entered the maintenance phase and received 150 mg of oteseconazole or placebo weekly for 11 weeks. Participants were observed for an additional 37 weeks. RESULTS: In the induction phase, oteseconazole was noninferior to fluconazole in the proportion of participants in the intent-to-treat population with resolved acute vulvovaginal candidiasis infection at the week 2 (day 14) test-of-cure visit, with 93.2% of participants on oteseconazole vs 95.8% on fluconazole achieving resolution. In the maintenance phase, oteseconazole was superior to placebo in the proportion of participants in the intent-to-treat population with ≥1 culture-verified acute vulvovaginal candidiasis episode through 50 weeks, 5.1% compared with 42.2%, respectively (P<.001). Overall, treatment-emergent adverse event rates were similar in both groups: 54% for participants who received oteseconazole in the induction and maintenance phases vs 64% for participants who received fluconazole in the induction phase and placebo in the maintenance phase. Most treatment-emergent adverse events in each group were mild or moderate, with 3.4% of treatment-emergent adverse events graded as severe or higher in the OTESECONAZOLE/oteseconazole group vs 4.2% in FLUCONAZOLE/placebo group. CONCLUSION: In participants with recurrent vulvovaginal candidiasis, oteseconazole was safe and efficacious in the treatment and prevention of recurrent acute vulvovaginal candidiasis episodes and was noninferior to vulvovaginal candidiasis standard-of-care fluconazole in the treatment of the presenting acute vulvovaginal candidiasis infection.


Asunto(s)
Candidiasis Vulvovaginal , Infecciones , Femenino , Humanos , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/inducido químicamente , Fluconazol/uso terapéutico , Fluconazol/efectos adversos , Administración Oral , Antifúngicos/efectos adversos
5.
Science ; 376(6597): 1074-1079, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653481

RESUMEN

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.


Asunto(s)
Antimaláricos , Malaria Falciparum , Terapia Molecular Dirigida , Plasmodium falciparum , Biosíntesis de Proteínas , Proteínas Protozoarias , Tirosina-ARNt Ligasa , Adenosina/análogos & derivados , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cristalografía por Rayos X , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Biosíntesis de Proteínas/efectos de los fármacos , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Ácidos Sulfónicos/química , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
6.
NEJM Evid ; 1(8): EVIDoa2100055, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38319878

RESUMEN

Oteseconazole for Recurrent Vulvovaginal CandidiasisThese two phase 3, multicenter RCTs evaluated the efficacy of oral oteseconazole in treating recurrent vulvovaginal candidiasis (RVVC). Among women with a history of RVVC, oteseconazole treatment through week 48 led to acute VVC recurrence in about 5% of patients compared to about 40% of patients receiving placebo, P<0.001. Oteseconazole showed potent activity against fluconazole-resistant C. albicans and C. glabrata species; adverse events were similar in both treatment groups.

7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548400

RESUMEN

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Asunto(s)
Compuestos de Boro/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/farmacología , Administración Oral , Animales , Compuestos de Boro/administración & dosificación , Compuestos de Boro/química , Dominio Catalítico , Humanos , Malaria Falciparum/enzimología , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Moleculares , Plasmodium falciparum/enzimología , Inhibidores de Proteasoma/administración & dosificación , Inhibidores de Proteasoma/química
8.
Bioorg Chem ; 115: 105244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34452759

RESUMEN

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Purinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
9.
J Med Chem ; 64(9): 5905-5930, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33904304

RESUMEN

There is an urgent need for new treatments for visceral leishmaniasis (VL), a parasitic infection which impacts heavily large areas of East Africa, Asia, and South America. We previously reported on the discovery of GSK3494245/DDD01305143 (1) as a preclinical candidate for VL and, herein, we report on the medicinal chemistry program that led to its identification. A hit from a phenotypic screen was optimized to give a compound with in vivo efficacy, which was hampered by poor solubility and genotoxicity. The work on the original scaffold failed to lead to developable compounds, so an extensive scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized, leading to the preclinical candidate. The compound was shown to act via proteasome inhibition, and we report on the modeling of different scaffolds into a cryo-EM structure and the impact this has on our understanding of the series' structure-activity relationships.


Asunto(s)
Diseño de Fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Proteínas Protozoarias/metabolismo , Animales , Antiprotozoarios/química , Antiprotozoarios/metabolismo , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Sitios de Unión , Línea Celular , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones , Simulación de Dinámica Molecular , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Solubilidad , Relación Estructura-Actividad
10.
J Med Chem ; 64(7): 4150-4162, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33759519

RESUMEN

Novel 3,3'-disubstituted-5,5'-bi(1,2,4-triazine) compounds with potent in vitro activity against Plasmodium falciparum parasites were recently discovered. To improve the pharmacokinetic properties of the triazine derivatives, a new structure-activity relationship (SAR) investigation was initiated with a focus on enhancing the metabolic stability of lead compounds. These efforts led to the identification of second-generation highly potent antimalarial bis-triazines, exemplified by triazine 23, which exhibited significantly improved in vitro metabolic stability (8 and 42 µL/min/mg protein in human and mouse liver microsomes). The disubstituted triazine dimer 23 was also observed to suppress parasitemia in the Peters 4-day test with a mean ED50 value of 1.85 mg/kg/day and exhibited a fast-killing profile, revealing a new class of orally available antimalarial compounds of considerable interest.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Triazinas/uso terapéutico , Animales , Antimaláricos/síntesis química , Antimaláricos/farmacocinética , Células CACO-2 , Femenino , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/farmacocinética
11.
Clin Infect Dis ; 73(7): e1518-e1524, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32818963

RESUMEN

BACKGROUND: Acute vulvovaginal candidiasis (VVC) is common among women, but current azole antifungal treatments are often associated with safety and resistance issues. VT-1161 (oteseconazole) is an oral agent with increased selectivity for fungal CYP51. In this phase 2 clinical study, we evaluated the efficacy and safety of VT-1161 vs fluconazole in participants with moderate to severe acute VVC. METHODS: Participants presenting with an acute episode of VVC (n = 55) were randomized to receive VT-1161 300 mg once daily (q.d.) for 3 days, 600 mg q.d. for 3 days, or 600 mg twice daily (b.i.d.) for 3 days or to receive a single dose of fluconazole 150 mg (FDA-approved dose to treat acute VVC). Participants were followed for 6 months. The primary outcome was the proportion of participants with therapeutic (clinical and mycological) cure at day 28. RESULTS: A larger proportion of participants in the per-protocol population experienced therapeutic cure in the VT-1161 300 mg q.d. (75.0%), VT-1161 600 mg q.d. (85.7%), and VT-1161 600 mg b.i.d. (78.6%) groups vs the fluconazole group (62.5%); differences were not statistically significant. At 3 and 6 months, no participants in the VT-1161 groups vs 28.5% and 46.1% in the fluconazole group, respectively, had evidence of mycological recurrence. No serious adverse events or treatment-emergent adverse events leading to discontinuation were reported. CONCLUSIONS: The majority of participants across all treatment groups achieved therapeutic cure at day 28. VT-1161 was well tolerated at all dose levels through 6 months of follow-up. CLINICAL TRIALS REGISTRATION: NCT01891331.


Asunto(s)
Candidiasis Vulvovaginal , Administración Oral , Antifúngicos/uso terapéutico , Candidiasis Vulvovaginal/tratamiento farmacológico , Femenino , Fluconazol/uso terapéutico , Humanos , Piridinas/uso terapéutico , Tetrazoles/uso terapéutico
12.
Expert Opin Ther Targets ; 23(11): 903-914, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31679410

RESUMEN

Introduction: The proteasome is a multi-subunit enzyme complex responsible for the turnover of short-lived, abnormal or damaged proteins in eukaryotic cells. As organisms that undergo rapid growth and cell division, protozoan parasites exist on the knife-edge of proteotoxic catastrophe and thus rely heavily on their protein quality control machinery for survival. Because of this, the proteasome has recently emerged as a desirable drug target.Area covered: This review focuses on efforts to identify protozoan parasite-specific proteasome inhibitors using substrate profiling, library screening, and in vitro evolution of resistance approaches to inform medicinal chemistry. Targeting the parasite's 20S proteasome chymotrypsin-like (ß5) activity and selectively inhibiting protein turnover in parasites compared to human cells are critical properties of potent, selective inhibitors.Expert opinion: Proteasome inhibitors have the potential for rapid action against all stages, all species and all strains of plasmodium and kinetoplastid parasites. Given the high level of conservation of proteasome active sites in eukaryotes, an important challenge is achieving inhibitors that show sufficient selectivity while maintaining properties consistent with drug development.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores de Proteasoma/farmacología , Infecciones por Protozoos/tratamiento farmacológico , Animales , Desarrollo de Medicamentos , Humanos , Parásitos/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Infecciones por Protozoos/parasitología
13.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30962368

RESUMEN

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Asunto(s)
Antiprotozoarios/administración & dosificación , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/diagnóstico por imagen , Inhibidores de Proteasoma/administración & dosificación , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/química , Sitios de Unión , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimología , Leishmania infantum/química , Leishmania infantum/enzimología , Leishmaniasis Visceral/parasitología , Masculino , Ratones , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/química , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
14.
ACS Infect Dis ; 5(1): 111-122, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30380837

RESUMEN

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 µM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Descubrimiento de Drogas , Leishmania donovani/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Animales , Cósmidos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Proteoma/análisis , Proteómica
15.
J Med Chem ; 62(3): 1180-1202, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30570265

RESUMEN

The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.


Asunto(s)
Leishmaniasis Visceral/tratamiento farmacológico , Morfolinas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Tripanocidas/uso terapéutico , Animales , Femenino , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Morfolinas/síntesis química , Morfolinas/toxicidad , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/toxicidad , Pirazoles/síntesis química , Pirazoles/toxicidad , Pirimidinas/síntesis química , Pirimidinas/toxicidad , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/toxicidad
16.
J Med Chem ; 61(18): 8374-8389, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30207721

RESUMEN

Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Barrera Hematoencefálica/efectos de los fármacos , Diseño de Fármacos , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Supervivencia Celular , Femenino , Humanos , Ratones , Ratones Endogámicos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad , Tripanosomiasis Africana/microbiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-30104280

RESUMEN

VT-1129 is a novel fungal enzyme-specific Cyp51 inhibitor with potent cryptococcal activity. Because of its long half-life (>6 days in mice) and our desire to quickly reach potent efficacy, we evaluated a VT-1129 loading dose-maintenance dose strategy against cryptococcal meningitis. VT-1129 plasma and brain pharmacokinetics were first studied in healthy mice, and these data were used to model loading dose-maintenance dose regimens to generate different steady-state concentrations. Mice were inoculated intracranially with Cryptococcus neoformans, and oral treatment began 1 day later. Treatment consisted of placebo or one of three VT-1129 loading dose-maintenance dose regimens, i.e., loading dose of 1, 3, or 30 mg/kg on day 1, followed by once-daily maintenance doses of 0.15, 0.5, or 5 mg/kg, respectively. In the fungal burden arm, therapy continued for 14 days and brains were collected on day 15 for fungal burden assessments. In the survival arm, treatment continued for 10 days, after which mice were monitored without therapy until day 30. VT-1129 plasma and brain concentrations were also measured. All VT-1129 doses significantly improved survival and reduced fungal burdens, compared to placebo. VT-1129 plasma and brain levels correlated with fungal burden reductions (R2 = 0.72 and R2 = 0.67, respectively), with a plasma concentration of 1 µg/ml yielding a reduction of ∼5 log10 CFU/g. With the highest loading dose-maintenance dose regimen, fungal burdens were undetectable in one-half of the mice in the fungal burden arm and in one-fourth of the mice in the survival arm, 20 days after the final dose. These data support a loading dose-maintenance dose strategy for quickly reaching highly efficacious VT-1129 concentrations for treating cryptococcal meningitis.


Asunto(s)
Antifúngicos/farmacología , Meningitis Criptocócica/tratamiento farmacológico , Piridinas/farmacología , Tetrazoles/farmacología , Animales , Encéfalo/microbiología , Cryptococcus neoformans/efectos de los fármacos , Masculino , Meningitis Criptocócica/microbiología , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-29987152

RESUMEN

Cryptococcal meningitis is a significant cause of morbidity and mortality in immunocompromised patients. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. Our objective was to evaluate the in vivo efficacy of VT-1129 against cryptococcal meningitis. Mice were inoculated intracranially with Cryptococcus neoformans Oral treatment with VT-1129, fluconazole, or placebo began 1 day later and continued for either 7 or 14 days, and brains and plasma were collected on day 8 or 15, 1 day after therapy ended, and the fungal burden was assessed. In the survival study, treatment continued until day 10 or day 28, after which mice were monitored off therapy until day 30 or day 60, respectively, to assess survival. The fungal burden was also assessed in the survival arm. VT-1129 plasma and brain concentrations were also measured. VT-1129 reached a significant maximal survival benefit (100%) at a dose of 20 mg/kg of body weight once daily. VT-1129 at doses of ≥0.3 mg/kg/day and each dose of fluconazole significantly reduced the brain tissue fungal burden compared to that in the control after both 7 and 14 days of dosing. The fungal burden was also undetectable in most mice treated with a dose of ≥3 mg/kg/day, even ≥20 days after dosing had stopped, in the survival arm. In contrast, rebounds in fungal burden were observed with fluconazole. These results are consistent with the VT-1129 concentrations, which remained elevated long after dosing had stopped. These data demonstrate the potential utility of VT-1129 to have a marked impact in the treatment of cryptococcal meningitis.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Cryptococcus neoformans/efectos de los fármacos , Meningitis Criptocócica/tratamiento farmacológico , Piridinas/farmacología , Esterol 14-Desmetilasa/metabolismo , Tetrazoles/farmacología , Animales , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Fluconazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Modelos Teóricos
19.
Am J Obstet Gynecol ; 218(6): 624.e1-624.e9, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29534874

RESUMEN

BACKGROUND: Lanosterol demethylase is an enzyme that is essential for fungal growth and catalyzes an early step in the biosynthetic pathway of ergosterol, which is a sterol that is required for fungal cell membrane formation and integrity. Lanosterol demethylase is the molecular target of the class of drugs referred to as "azole antifungals." VT-1161 is a novel, oral, selective inhibitor of fungal lanosterol demethylase and is being developed for the treatment of recurrent vulvovaginal candidiasis. OBJECTIVE: We evaluated the efficacy and safety of 4 dosing regimens of oral VT-1161 compared with placebo in women with recurrent vulvovaginal candidiasis, which was defined as at least 3 symptomatic episodes of acute vulvovaginal candidiasis within a 12-month period. STUDY DESIGN: Two hundred fifteen women with a documented history of recurrent vulvovaginal candidiasis and who, at screening, were experiencing an episode of acute vulvovaginal candidiasis (acute vulvovaginal candidiasis; composite vulvovaginal signs and symptoms score of ≥3 and a positive potassium hydroxide test for yeast) were enrolled. After treatment of the acute infection with fluconazole, subjects were assigned randomly to 1 of 5 treatment regimens: (1) VT-1161 150 mg once daily for 7 days, then 150 mg once weekly for 11 weeks, followed by a once-weekly dose of placebo for 12 weeks; (2) VT-1161 300 mg once daily for 7 days, then 300 mg once weekly for 11 weeks, followed by a once-weekly dose of placebo for 12 weeks; (3) VT-1161 150 mg once daily for 7 days, then 150 mg once weekly for 23 weeks; (4) VT-1161 300 mg once daily for 7 days, then 300 mg once weekly for 23 weeks; or (5) a matching placebo regimen for 24 weeks. The primary efficacy outcome was the proportion of subjects with ≥1 culture-verified acute vulvovaginal candidiasis episodes through week 48. RESULTS: In the intent-to-treat population, the proportion of subjects with ≥1 acute vulvovaginal candidiasis episodes ranged from 0-7% across the 4 VT-1161 arms vs 52% in the placebo arm, with all arms achieving statistical significance vs placebo. VT-1161 was well-tolerated with a favorable safety profile, and the incidence of adverse events was lower in all VT-1161 arms compared with placebo. In addition, no patient in any VT-1161 arm discontinued the study early because of an adverse event or laboratory abnormality. There was also no evidence of an adverse effect of VT-1161 on liver function or electrocardiogram recordings. CONCLUSION: In this study, VT-1161 was shown to be efficacious and safe in the treatment of patients with recurrent vulvovaginal candidiasis. These data strongly support further clinical investigation of VT-1161 for the treatment of recurrent vulvovaginal candidiasis.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/administración & dosificación , Antifúngicos/administración & dosificación , Candidiasis Vulvovaginal/tratamiento farmacológico , Piridinas/administración & dosificación , Tetrazoles/administración & dosificación , Administración Oral , Adulto , Antifúngicos/uso terapéutico , Método Doble Ciego , Femenino , Fluconazol/uso terapéutico , Humanos , Quimioterapia de Inducción , Quimioterapia de Mantención , Persona de Mediana Edad , Recurrencia , Adulto Joven
20.
J Med Chem ; 60(23): 9790-9806, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29125744

RESUMEN

N-Myristoyltransferase (NMT) represents a promising drug target within the parasitic protozoa Trypanosoma brucei (T. brucei), the causative agent for human African trypanosomiasis (HAT) or sleeping sickness. We have previously validated T. brucei NMT as a promising druggable target for the treatment of HAT in both stages 1 and 2 of the disease. We report on the use of the previously reported DDD85646 (1) as a starting point for the design of a class of potent, brain penetrant inhibitors of T. brucei NMT.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aminopiridinas/química , Aminopiridinas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Aciltransferasas/metabolismo , Aminopiridinas/síntesis química , Aminopiridinas/farmacocinética , Animales , Encéfalo/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Sulfonamidas/síntesis química , Sulfonamidas/farmacocinética , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Tripanosomiasis Africana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...