Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(10): e20936, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37886741

RESUMEN

This research is a continuation of previously reported article on anhydrous freebase, cationic and hydrochloride tacrine. Here, structures and properties of di-hydrated species of cholinesterase inhibitor tacrine have been studied in gas phase and aqueous solution by using B3LYP/6-311G* and wB97XD/6-311G* levels of theory. Both methods show strong changes in the positions of two water molecules and similar solvation energies (-192.52 kJ/mol with the B3LYP method and -191.95 kJ/mol with the other one). The B3LYP method predicts low gap values for the anhydrous (2.4572 eV) and di-hydrated (3.2708 eV) species of tacrine in gas phase than the wB97XD/6-311G* method (7.2300 eV). Hence, higher reactivities are expected for the di-hydrated species in both media. Atoms in molecules (AIM) calculations support the lower stability of di-hydrated species in solution in agreement with its higher reactivity in this medium. Complete assignments of 104 vibration modes expected for di-hydrated hydrochloride by using the scaled mechanical force field (SQMFF) methodology have been reported. Both methods predict different assignments and scaled force constants presenting higher values those calculated with the wB97XD/6-311G* method. The predicted IR, Raman and 1H NMR spectra with both methods show good correlations with the corresponding experimental ones, however, better concordances between the 13C NMR and UV spectra are observed with the wB97XD/6-311G* method.

2.
Heliyon ; 9(6): e17280, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37441405

RESUMEN

Different structures of free base (FB), two cationic forms (CA) and three hydrochloride forms (HCl) of cholinesterase inhibitor tacrine used for treatment of Alzheimer 's disease was evaluated using hybrid B3LYP calculations in order to perform their complete vibrational assignments using the scaled harmonic force fields. Structures of anhydrous form of tacrine have been optimized in gas phase and in aqueous solution. The structure of form III HCl is in agreement with the experimental determined by X-ray diffraction while the predicted IR, Raman, 1H- 13C NMR and UV spectra show good correlations with the corresponding experimental ones. Energy values show that the three forms of HCl can exist in both media because these energetic values decrease from 35.15 kJ/mol in gas phase to 5.51 kJ/mol in solution. For the most stable species of tacrine, the following stability order using natural bond orbital (NBO) studies was found: form I HCl > form III HCl > form I CA > FB. CA presents the higher solvation energy value, as reported for hydrochloride species of alkaloids and antihypertensive agents. The structural parameters of form III of HCl present better concordance and corresponds to that experimental observed in the solid phase. Higher topological properties of form III together with the strong N2-H26⋯Cl31 interaction could justify the presence of this form in the solid phase and in solution and the higher stabilities in both media. The gap values support the higher reactivity of form III while FB is the less reactive species in both media. Complete vibrational assignments for FB, CA and HCl species together with the corresponding scaled force constants are reported.

3.
J Mol Graph Model ; 120: 108420, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36706573

RESUMEN

Here, the electronic transport characteristics of the 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran were studied by using NEGF and DFT methods. By being exposed to UV or visible light, this molecule can change from its MC to SP states. The titled structure was optimized at B3LYP/6-311++G(d,p) level of theory. To obtain conductivity results, the electrons of metal and organic atoms were approached by the single-plus polarization (SZP) for single-zeta and double-plus polarization (DZP) for double zeta basis sets, respectively. We examined some factors in this study, including various molecule geometries, the type of surface materials (Platinum, gold, and silver), the switching ratio, the gap between HOMO and LUMO levels, and the transmission spectra, at different bias voltages. The outcomes show that conductivity transforms from an off-state (high resistance) to an on-state as the molecule switches from MC to SP form (low resistance).


Asunto(s)
Electrónica , Teoría Cuántica , Modelos Moleculares , Conductividad Eléctrica , Espectroscopía Infrarroja por Transformada de Fourier
4.
Heliyon ; 8(8): e10102, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36016527

RESUMEN

In this research, a combined study on structures and vibrational spectra of antiviral rimantadine have been performed using hybrid B3LYP/6-311++G∗∗ calculations and the scaled quantum force field (SQMFF) procedure. Harmonic force fields and scaled force constants of Free Base (FB), Cationic (CA) and Hydrochloride (HCl) species derived from the antiviral rimantadine have been calculated in gas phase and in aqueous solution using normal internal coordinates and scaling factors. Good correlations were acquired comparing the theoretical IR, Raman, 1H- 13C-NMR and UV spectra of three species with the analogous experimental ones, suggesting probably, the presence of all them in both phases. The main force constants of three species have evidenced lower values than the corresponding to antiviral amantadine. The ionic character of N1-H33⋯Cl36 bond of HCl species in aqueous solution evidence positive Mulliken charge on N1 atom indicating that this species is as CA one. Rimantadine presents higher solvation energies in water than other antiviral species, such as chloroquin, niclosamide, cidofovir and brincidofovir. The FB and HCl species of rimantadine are slightly less reactive than the corresponding to amantadine while the opposite is observed for the CA species. The predicted ECD spectra for the FB and CA species show positive Cotton effect different from the negative observed for the HCl one. These different behaviours of three species of rimantadine could probably explain the differences observed in the intensities of bands predicted in the electronic spectra of these species.

5.
J Mol Model ; 28(9): 268, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995874

RESUMEN

In this research, the optimised structural and vibrational properties of cis-trans isomers of powerful insecticide allethrin were theoretically studied in gas phase and in aqueous and ethanol solutions by using hybrid B3LYP/6-311 + + g(d,p) level of theory. The results revealed that the permittivity of solvent has influence on the properties of both isomers, thus, higher dipole moments and solvation energies are observed in water, a solvent of higher permittivity (78.355) than ethanol. Complete vibrational assignments of both isomers were done by combining the experimental IR spectrum of allethrin with the scaled quantum mechanical force field (SQMFF) methodology and the determination of corresponding scaled force constants in gas phase and aqueous solution are reported. Different signs of dihedral O2C10C6C4 angles of both isomers (negative in cis and positive in trans) support the differences in the vibrational assignments. Natural bond orbital (NBO) calculations suggest that both isomers are highly stable in gas phase and aqueous solution and that the side chains and five member's rings are involved in the n → σ* interactions. However, atoms in molecules (AIM) studies reveal a higher stability of form cis in both media than the trans one. Merz-Kollman (MK), Mulliken and natural population atomic (NPA) charges for both isomers support the higher hydration of trans isomer in aqueous media and, hence, the higher solvation energy in water (ΔGC/ZPVE = - 80.29 kJ/mol). Changes in the bond orders of O and C atoms of side chain are observed in water as a consequence of hydration. The higher stability of the cis form in the above solutions could be explained by the lower solvation energy in water, as supported by AIM calculations. The studies of frontier orbital reveal that the cis form in both media is sligthly more reactive than the trans form.


Asunto(s)
Insecticidas , Teoría Cuántica , Aletrinas , Etanol , Modelos Moleculares , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Vibración , Agua/química
6.
J Mol Model ; 27(12): 357, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812947

RESUMEN

The synthetic cyclohexenecarboxylate ester antiviral Oseltamivir (O) have been theoretically studied by B3LYP/6-311 + + G** calculations to estimate its reactivity and behaviour in gas and aqueous media. The most stable structure obtained in above media is consistent with that reported experimental for Oseltamivir phosphate. The solvation energy value of (O) in aqueous media is between the predicted for antiviral Idoxuridine and Ribavirin. Besides, (O) containing a NH2 group and NH group reveals lower solvation energy compared with other antiviral agents with an NH2 group, such as Ribavirin, Cidofovir, and Brincidofovir. Atomic charges on N and O atoms in acceptors and donor groups reveal different behaviours in both media, while the natural bond orbital (NBO) studies show a raised stability of (O) in aqueous solution. This latter resulted is in concordance with the lower reactivity evidenced in water. Frontier orbital studies have revealed that (O) in gas phase has a very similar gap value to antiviral Cidofovir used against the ebola disease, while Chloroquine in the two media are more reactive than (O). This study will allow to identify (O) by using vibrational spectroscopy because the 144 vibration modes expected have been assigned using the harmonic force fields calculated from the scaled mechanical force field methodology (SQMFF). Scaled force constants for (O) in the mentioned media are also reported for first time. Due to hydration of the C = O and NH2 groups by solvent molecules, the calculations in solution produce variations not only in the IR wavenumbers bands, but also in their intensities.


Asunto(s)
Antivirales/química , Oseltamivir/química , Teoría Funcional de la Densidad , Gases/química , Modelos Químicos , Conformación Molecular , Soluciones/química , Electricidad Estática , Agua/química
7.
Heliyon ; 6(8): e04640, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32802981

RESUMEN

In the present work, the succinic acid (SA), L-pyroglutamic acid (L-PGA), N-phenyl-thioacetamide (N-NPTA), 2-amino-5-chloropyridine hydrogen succinate (ACPS), epigallocatechine Gallate (EGCG) or KDH and, selenomethionine (SeM) compounds have been proposed as potential antiviral candidates to treatment of COVID-19 based on B3LYP/6-311++G∗∗ calculations and molecular docking. Solvation energies, stabilization energies, topological properties have been evaluated as function of acceptors and donors groups present in their structures. ACPS presents the higher reactivity in solution possibly because has the higher nucleophilicity and elecrophilicity indexes while KDH evidence the higher solvation energy probably due to the higher quantity of donors and acceptors groups. NBO studies show that KDH is the most stable in solution. Mapped MEP surfaces have evidenced stronger nucleophilic and electrophilic sites in ACPS, in agreement with the three C=O and two N-H and O-H groups present in this species while KDH has only a C=O group but a total of 19 acceptors and donors groups. From the above studies for six species we can propose that the better potential antiviral candidate to treatment of COVID-19 is ACPS and then, KDH. For a better prediction of the antiviral and anti-inflammatory properties of the proposed compounds, molecular docking calculations were performed by using four structures of COVID-19. Docking results were discussed basing on binding affinities and the interaction types among ligands and different amino acid residues, indicating the powerful ability of KDH and then ACPS ligands on front of the novel coronavirus disease especially for the first and the fourth species (6LU7, 7BTF).

8.
Comput Biol Chem ; 87: 107311, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32604029

RESUMEN

Structural optimization, molecular docking analysis, electronic and vibrational properties have been investigated for the 1-benzofuran-2-carboxylic acid (2BF) and 1-benzofuran-3-carboxylic acid (3BF) using DFT/B3LYP/6-311++G(d,p) level of theory. The theoretical parameters have a very good consistency with the experimental ones. The weak intermolecular interactions were analyzed by different tool such as: Hirshfeld surfaces, topological analysis and natural bond orbital studies. The nonlinear optical properties have been investigated. Molecular electrostatic potential and frontier molecular orbitals (FMOs) analysis have been carried out to understand the reactivity of the molecule. In addition, TD-DFT calculation is initiated to simulate the UV-vis absorption spectrum and to determine several important electronic properties like HOMO-LUMO gap energy and electronic transitions. The complete vibrational assignments and the force constants were reported for monomer and dimers of both acids. The biological activities of the tow acids have been studied via molecular docking analysis. The later calculations prove that the studied acids have an inhibitor effect against cancer and microbial diseases.

9.
J Mol Struct ; 1219: 128610, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32536722

RESUMEN

Squamocin, an annonaceous acetogenin has been experimentally isolated and characterized in the solid state using the FT-IR and FT-Raman spectra and in methanol solution by UV-visible spectrum. The main bands observed were assigned combining the IR and Raman spectra with hybrid functional B3LYP/6-31G∗ calculations. Structural, electronic and topological properties were predicted at the same level of theory for the most stable conformer of squamocin in gas phase and methanol solution. A corrected solvation energy value of -147.54 kJ/mol was predicted for squamocin in methanol while the atomic population natural (NPA) charges evidence higher values on O atoms of R2 and R3 rings, as compared with the corresponding to lactone ring. Mapped MEP surfaces suggest that nucleophilic regions are located on the O atoms of three rings and of OH bonds belonging to side chain, in agreement with the higher charges values evidenced on these O atoms while electrophilic regions are predicted on the H atoms of OH groups. High stabilities of squamocin in both media was revealed by AIM studies while only in methanol solution by NBO calculations. The expansion of volume and the higher dipole moment in methanol suggest a clear solvation of squamocin by solvent molecules. Gap values have evidenced that squamocin is most reactive in methanol while that its large aliphatic chain produces an increases the reactivity of this γ-lactone, as compared with ascorbic acid lactone. Reasonable concordances among the predicted UV-visible and IR, Raman spectra with the corresponding experimental ones were found.

10.
J Mol Model ; 25(12): 348, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729589

RESUMEN

The structural, electronic, and topological properties of a series of four members of potassium 6-X-2-isonicotinoyltrifluoroborate (X=H, F, Cl, Br) salts have been explored by using ab initio calculations with the hybrid B3LYP/6-311++G** method. According to the potential energy surface only the properties for the most stable conformer of each member of the series and their anions were analyzed in function of electronegativity and atomic radius of X. The results show that when X=H, the salt and its anion have symmetry CS while the symmetry change to C1 for the halogenated F, Cl, and Br derivatives and their anions. Both, electronegativity and atomic radius properties show higher effects on V than on µ. Similar behaviors are observed when the Mulliken charges on N and X atoms are analyzed vs electronegativites, and atomic radius of X while an important decreasing on NPA charges of X is observed when increase its electronegativity. The strong influence of electronegativity and atomic radius of X are evidenced in the low bond order value observed in the C1 atom of F salt. The strong energetic π*C2-C3 → π*C4-C5 transition observed only for the F salt confer to it a high stability. The frontier orbitals have revealed that the 6-H-IFTB salt is the less reactive species while the higher reactivity is predicted for the Br salt. Evidently, the smaller electronegativity and higher atomic radius of Br justify the high reactivity predicted for its salt. Graphical abstractExploring properties of potasium 6-X-2-isonicotinoyltrifluoroborate (X= H, F, Cl, Br).

11.
Heliyon ; 5(9): e02322, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31535039

RESUMEN

Structural and vibrational properties of free base, cationic and hydrochloride species derived from both S(-) and R(+) enantiomers of antihistaminic promethazine (PTZ) agent have been theoretically evaluated in gas phase and in aqueous solution by using the hybrid B3LYP/6-31G* calculations. The initial structures of S(-) and R(+) enantiomers of hydrochloride PTZ were those polymorphic forms 1 and 2 experimentally determined by X-ray diffraction. Here, all structures in aqueous solution were optimized at the same level of theory by using the polarized continuum (PCM) and the universal solvation model. As was experimentally reported, variations in the unit cell lead to slight energy, density, and melting point differences between the two forms but, this behavior is not carried through in isotropic condition, like in solution with non-chiral solvents. Hence, the N-C distances, Mulliken, atomic natural population (NPA) and Merz-Kollman (MK) charges, bond orders, stabilization and solvation energies, frontier orbitals, some descriptors and their topological properties were compared with the antihistaminic cyclizine agent. The frontier orbitals studies show that the free base species of both forms in solution are more reactive than cyclizine. Higher electrophilicity indexes are observed in the cationic and hydrochloride species of PTZ than cyclizine while the cationic species of cyclizine have higher nucleophilicity index than both species of PTZ. The presences of bands attributed to cationic species of both enantiomers are clearly supported by the infrared and Raman spectra in the solid phase. The expected 114, 117 and 120 vibration normal modes for the free base, cationic and hydrochloride species of both forms were completely assigned and the force constants reported. Reasonable concordances among the predicted infrared, Raman, UV-Vis and Electronic Circular Dichroism (ECD) with the corresponding experimental ones were found.

12.
Heliyon ; 2(11): e00190, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27844063

RESUMEN

In this work, the influence of the different S═O, S-O, N⋯H, O⋯H, Na⋯O bonds present in the structures of the powerful laxative drug, sodium picosulphate in gas and aqueous solution phases were studied combining the density functional theory (DFT) calculations with the experimental available infrared, 1H NMR and UV-visible spectra. The structural, topological, electronic and vibrational properties were investigated in both media by using the hybrid B3LYP/6-31G* method and the integral equation formalism variant polarised continuum model (IEFPCM). Here, the characteristics of the S═O, S-O, N⋯H, O⋯H, Na⋯O bonds were completely revealed by using atomic charges, natural bond orbital (NBO) and atoms in molecules (AIM) studies. The infrared, 1H NMR, 13C NMR and UV-visible spectra are in reasonable concordance with those experimental available in the literature. The vibrational analysis of sodium picosulphate was performed considering C3V symmetries for both SO42- groups and the complete assignments of the 126 vibration modes were reported in gas phase and aqueous solution together with their corresponding force fields. In addition, the reactivities of sodium picosulfate increase in solution due to their ionic characteristic which probably justifies their behaviour as a stimulant cathartic and their easy metabolic conversion, as reported in the literature.

13.
Carbohydr Res ; 428: 41-56, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27131126

RESUMEN

The structures of α- and ß-maltose anhydrous and their corresponding monohydrated species were studied combining the FT-IR, FT-Raman and HATR spectra with DFT calculations. The four structures were optimized in gas and aqueous solution by using the hybrid B3LYP/6-31G* method. The self-consistent force field (SCRF) calculations together with the polarized continuum (PCM) model were used to study the systems in solution while the solvation energies were computed using the solvation model (SM). The calculated structural and vibrational properties could explain the anomerization of maltose in solution, as was reported in the literature while the natural bond orbital (NBO) analyses for those species support clearly the mutarotation equilibria between both forms in solution, evidencing the anhydrous forms the equilibrium: α (45%) ⇔ ß (55%), similar to that experimentally reported at 20 °C. Bands of all the species observed in the vibrational spectra support the presence of the anomeric species of maltose in solution while the presence of dimeric species justify the intense IR bands observed in the higher wavenumbers region. The similar gap values for maltose and lactose probably justify that these sugars are reducing sugars while the high values in sucrose could explain that it is a non-reducing sugar. On the other hand, the sweeteners cyclamate and saccharine are most reactive in solution than the sugars maltose, lactose and sucrose, as expected due to their ionic characteristics. The predicted vibrational spectra for the four species of maltose show reasonable concordances with the corresponding experimental ones. The f(δC-O-C) force constants of the glycosidic bonds follow the tendency: maltose > lactose > sucrose.


Asunto(s)
Maltosa/química , Enlace de Hidrógeno , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
14.
Artículo en Inglés | MEDLINE | ID: mdl-26057092

RESUMEN

In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (µ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings.


Asunto(s)
Lactonas/química , Sesquiterpenos/química , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Electricidad Estática , Vibración
15.
Carbohydr Res ; 407: 34-41, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25704196

RESUMEN

In this work, the α and ß isomers, the α-lactose monohydrate and dihydrate and the dimeric species of lactose were studied from the spectroscopic point of view in gas and aqueous solution phases combining the infrared, Horizontal Attenuated Total Reflectance (HATR) and Raman spectra with the density functional theory (DFT) calculations. Aqueous saturated solutions of α-lactose monohydrate and solutions at different molar concentrations of α-lactose monohydrate in water were completely characterized by infrared, HATR and Raman spectroscopies. For all the species in solution, the solvent effects were studied using the solvation polarizable continuum (PCM) and solvation (SM) models and, then, their corresponding solvation energies were predicted. The vibrational spectra of those species in aqueous solution were completely assigned by employing the Scaled Quantum Mechanics Force Field (SQMFF) methodology and the self-consistent reaction field (SCRF) calculations. The stabilities of all those species were studied by using the natural bond orbital (NBO), and atoms in molecules (AIM) calculations.


Asunto(s)
Lactosa/química , Agua/química , Conformación de Carbohidratos , Modelos Químicos , Teoría Cuántica , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos
16.
Carbohydr Res ; 388: 112-24, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24632216

RESUMEN

In the present study, a complete assignment of the vibrational spectra of sucrose in aqueous medium was performed combining Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology with self-consistent reaction field (SCRF) calculations. Aqueous saturated solutions of sucrose and solutions at different molar concentrations of sucrose in water were completely characterized by infrared, HATR, and Raman spectroscopies. In accordance with reported data of the literature for sucrose, the theoretical structures of sucrose penta and sucrose dihydrate were also optimized in gas and aqueous solution phases by using the density functional theory (DFT) calculations. The solvent effects for the three studied species were analyzed using the solvation PCM/SMD model and, then, their corresponding solvation energies were predicted. The presence of pure water, sucrose penta-hydrate, and sucrose dihydrate was confirmed by using theoretical calculations based on the hybrid B3LYP/6-31G(∗) method and the experimental vibrational spectra. The existence of both sucrose hydrate complexes in aqueous solution is evidenced in the IR and HATR spectra by means of the characteristic bands at 3388, 3337, 3132, 1648, 1375, 1241, 1163, 1141, 1001, 870, 851, 732, and 668cm(-1) while in the Raman spectrum, the groups of bands in the regions 3159-3053cm(-1), 2980, 2954, and 1749-1496cm(-1) characterize the vibration modes of those complexes. The inter and intra-molecular H bond formations in aqueous solution were studied by Natural Bond Orbital (NBO) and Atoms in Molecules theory (AIM) investigation.


Asunto(s)
Sacarosa/química , Agua/química , Conformación Molecular , Teoría Cuántica , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Termodinámica , Vibración
17.
Artículo en Inglés | MEDLINE | ID: mdl-24291575

RESUMEN

The structural and vibrational properties of cyclic dimer of 2-furoic acid (2FA) were predicted by combining the available experimental infrared and Raman spectra in the solid phase and ab initio calculations based on density functional theory (DFT) with Pople's basis sets. The calculations show that there are two cyclic dimers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, cis conformer, is present in the solid phase. The complete assignment of the 66 normal vibrational modes for the cis cyclic dimer was performed using the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Four strong bands in the infrared spectrum at 1583, 1427, 1126 and 887 cm(-1) and the group of bands in the Raman spectrum at 1464, 1452, 1147, 1030, 885, 873, 848, 715 and 590 cm(-1) are characteristic of the dimeric form of 2FA in the solid phase. In this work, the calculated structural and vibrational properties of both dimeric species were analyzed and compared between them. In addition, three types of atomic charges, bond orders, possible charge transfer, topological properties of the furan rings, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theory calculations were employed to study the stabilities and intermolecular interactions of the both dimers of 2FA.


Asunto(s)
Dimerización , Furanos/química , Espectrometría Raman , Vibración , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 101: 196-203, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23103461

RESUMEN

The molecular structure of two mixed and closely related conformers of the title compound, C13H16O2, found in the solid with unequal occupancies has been determined by X-ray diffraction methods. The substance crystallizes in the monoclinic Pca2(1) space group with a=17.279(2), b=5.1716(7), c=12.549(2)Å, and Z=4 molecules per unit cell. The structure was solved from 1314 reflections with I>2σI and refined to an agreement R1-factor of 0.049. The minor conformer (34.7%) is nearly mirror-related to and extensively overlapped with the major one. The skeleton of the 4-hydroxyacetophenone molecular fragment and the prenyl group, (CH2)(CH)C(CH3)2, pendant arm attached to it are both planar and perpendicular to each other. A strong intermolecular O-H⋯O bond links neighboring molecules in the lattice to produce a polymeric structure. The conformational structures of the compound in the gas phase have been calculated by the DFT method and the geometrical results have been compared with the X-ray data. These data allow a complete assignment of vibration modes in the solid state FTIR and Raman spectra. The calculated 1H and 13C chemicals shifts are in good agreement with the corresponding experimental NMR spectra of the compound in solution.


Asunto(s)
Acetofenonas/química , Antifúngicos/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Plantas/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
19.
Carbohydr Res ; 361: 212-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22878022

RESUMEN

We combined experimental vibrational spectroscopy (FTIR-Raman) and ab-initio calculations based on density functional theory (DFT) to predict the structural and vibrational properties of sucrose in solid phase. The structural properties of sucrose, such as the bond order, possible charge-transfer, and the topological properties of the glucopyran and glucofuran rings were studied by means of the Natural Bond Orbital (NBO) and Atoms in Molecules theory (AIM) investigation. For a complete assignment of the infrared and Raman spectra, the density functional theory (DFT) calculations were combined with Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology in order to fit the theoretical frequency values to the experimental ones. An agreement between theoretical and available experimental results was found. A complete assignment of the 129 normal vibration modes for sucrose was performed. Five very intense characteristic bands in the infrared spectrum of sucrose at 3391, 3339, 1069, 1053, and 991 cm(-1) were assigned, the first two to the OH stretching modes while the other ones to C-O stretching modes.


Asunto(s)
Sacarosa/química , Modelos Moleculares , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Vibración
20.
Artículo en Inglés | MEDLINE | ID: mdl-22763324

RESUMEN

Structural and vibrational properties of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, isolated from Senecio nutans Sch. Bip. (Asteraceae) were studied by infrared and Raman spectroscopies in solid phase. The Density Functional Theory (DFT) method together with Pople's basis set show seven stable conformers for the compound in the gas phase and that only two conformations are probably present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry were calculated at B3LYP/6-31G and B3LYP/6-311++G levels. For a complete assignment of the vibrational spectra, DFT calculations were combined with Pulay´s Scaled Quantum Mechanics Force Field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental ones. Then, a complete assignment of all the observed bands in the vibrational spectra was performed. The natural bond orbital (NBO) study reveals the characteristics of the electronic delocalization of the two stable structures, while the corresponding topological properties of electronic charge density were analyzed by employing Bader's Atoms in the Molecules theory (AIM).


Asunto(s)
Acetofenonas/química , Vibración , Cinética , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...