Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20341, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434090

RESUMEN

Fused filament fabrication (FFF) represents a straightforward additive manufacturing technique applied in the medical sector for personalized patient treatment. However, frequently processed biopolymers lack sufficient thermal stability to be used as auxiliary devices such as surgical guides. The aim of this study was to evaluate the dimensional accuracy of experimental biocopolyester blends with improved thermal characteristics after printing, annealing and sterilization. A total of 160 square specimens and 40 surgical guides for oral implant placement were printed. One subgroup of each material (n = 10) underwent thermal annealing before both subgroups were subjected to steam sterilization (134 °C; 5 min). Specimens were digitized and the deviation from the original file was calculated. The thermal behavior was analyzed using differential scanning calorimetry and thermogravimetric analysis. A one-way ANOVA and t-tests were applied for statistical analyses (p < 0.05). All biocopolyester blends showed warpage during steam sterilization. However, the material modification with mineral fillers (21-32 wt%) and nucleating agents in combination with thermal annealing showed a significantly reduced warpage of printed square specimens. Geometry of the printing object seemed to affect dimensional accuracy, as printed surgical guides showed less distortion between the groups. In summary, biocopolyesters did benefit from fillers and annealing to improve their dimensional stability.


Asunto(s)
Impresión Tridimensional , Vapor , Humanos , Esterilización
2.
J Mater Sci Mater Med ; 33(11): 76, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264396

RESUMEN

Fractures of the paranasal sinuses often require surgical intervention. Persisting bone defects lead to permanent visible deformities of the facial contours. Bone substitutes for reconstruction of defects with simultaneous induction of new bone formation are not commercially available for the paranasal sinus. New materials are urgently needed and have to be tested in their future area of application. For this purpose critical size defect models for the paranasal sinus have to be developed. A ≥2.4 cm large bilateral circular defect was created in the anterior wall of the maxillary sinus in six sheep via an extraoral approach. The defect was filled with two types of an osteoconductive titanium scaffold (empty scaffold vs. scaffold filled with a calcium phosphate bone cement paste) or covered with a titanium mesh either. Sheep were euthanized after four months. All animals performed well, no postoperative complications occured. Meshes and scaffolds were safely covered with soft tissue at the end of the study. The initial defect size of ≥2.4 cm only shrunk minimally during the investigation period confirming a critical size defect. No ingrowth of bone into any of the scaffolds was observed. The anterior wall of the maxillary sinus is a region with low complication rate for performing critical size defect experiments in sheep. We recommend this region for experiments with future scaffold materials whose intended use is not only limited to the paranasal sinus, as the defect is challenging even for bone graft substitutes with proven osteoconductivity. Graphical abstract.


Asunto(s)
Sustitutos de Huesos , Ovinos , Animales , Cementos para Huesos , Titanio , Maxilar/cirugía , Fosfatos de Calcio , Regeneración Ósea , Seno Maxilar/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...