Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Cancer ; 154(4): 607-614, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37776287

RESUMEN

Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.


Asunto(s)
Mutación de Línea Germinal , Neoplasias , Niño , Humanos , Predisposición Genética a la Enfermedad , Mutación , Neoplasias/genética , Mapeo Cromosómico
3.
Hemasphere ; 7(8): e925, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37469802

RESUMEN

The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.

4.
J Pediatr Hematol Oncol ; 45(2): e244-e248, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537032

RESUMEN

Application of next-generation sequencing may lead to the detection of secondary findings (SF) not related to the initially analyzed disease but to other severe medically actionable diseases. However, the analysis of SFs is not yet routinely performed. We mined whole-exome sequencing data of 231 pediatric cancer patients and their parents who had been treated in our center for the presence of SFs. By this approach, we identified in 6 children (2.6%) pathogenic germline variants in 5 of the noncancer-related genes on the American College of Medical Genetics and Genomics (ACMG) SF v3.0 list, of which the majority were related to cardiovascular diseases ( RYR2 , MYBPC3 , KCNQ1 ). Interestingly, only the patient harboring the KCNQ1 variant showed at the time point of the analysis signs of the related Long QT syndrome. Moreover, we report 3 variants of unknown significance which, although not classified as pathogenic, have been reported in the literature to occur in individuals with the respective disease. While the frequency of patients with SFs is low, the impact of such findings on the patients' life is enormous, with regard to the potential prevention of life-threatening diseases. Hence, we are convinced that such actionable SF should be routinely analyzed.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias , Humanos , Niño , Estados Unidos , Canal de Potasio KCNQ1/genética , Secuenciación del Exoma , Neoplasias/genética , Padres , Pruebas Genéticas
5.
Front Pediatr ; 10: 1080347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824296

RESUMEN

Molecular screening tools have significantly eased the assessment of potential germline susceptibility factors that may underlie the development of pediatric malignancies. Most of the hitherto published studies utilize the comparative analyses of the respective patients' germline and tumor tissues for this purpose. Since this approach is not able to discriminate between de novo and inherited sequence variants, we performed whole exome trio analyses in a consecutive series of 131 children with various forms of hematologic malignancies and their parents. In total, we identified 458 de novo variants with a range from zero to 28 (median value = 3) per patient, although most of them (58%) had only up to three per exome. Overall, we identified bona fide cancer predisposing alterations in five of the investigated 131 (3.8%) patients. Three of them had de novo pathogenic lesions in the SOS1, PTPN11 and TP53 genes and two of them parentally inherited ones in the STK11 and PMS2 genes that are specific for a Peutz-Jeghers and a constitutional mismatch repair deficiency (CMMRD) syndrome, respectively. Notwithstanding that we did not identify a disease-specific alteration in the two cases with the highest number of de novo variants, one of them developed two almost synchronous malignancies: a myelodysplastic syndrome and successively within two months a cerebral astrocytoma. Moreover, we also found that the rate of de novo sequence variants in the offspring increased especially with the age of the father, but less so with that of the mother. We therefore conclude that trio analyses deliver an immediate overview about the inheritance pattern of the entire spectrum of sequence variants, which not only helps to securely identify the de novo or inherited nature of genuinely disease-related lesions, but also of all other less obvious variants that in one or the other way may eventually advance our understanding of the disease process.

6.
J Mol Diagn ; 19(5): 801-804, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28732213

RESUMEN

The improvement in sensitive techniques has allowed the detection of tumor-specific aberrations in circulating tumor (ct) DNA. Amplification-refractory mutation system PCR has been used for the analysis of ctDNA to detect resistance-causing mutations in the epidermal growth factor receptor gene (eg, EGFR T790M) in lung cancer patients. So far, Streck tubes have been widely used as standard blood collection tubes. Here, we compared blood collection tubes manufactured by Streck with tubes from Roche and Qiagen regarding their utility in stabilizing ctDNA in plasma samples. Venous blood from healthy donors was collected in tubes from Streck, Roche, and Qiagen. Samples were spiked with artificially fragmented EGFR T790M-mutated DNA and stored for different periods of time or spiked with different DNA amounts before plasma preparation. Extracted ctDNA was analyzed by amplification-refractory mutation system PCR. Mutant DNA, spiked into blood samples from healthy donors at quantities of 1 or 3 ng, was still reliably detectable in all samples after 7 days. EGFR T790M could be detected when spiking was performed with an amount of artificial ctDNA of 0.5 ng when tubes from Roche and Qiagen were used. Blood collection tubes from Roche and Qiagen are highly suitable for ctDNA stabilization and subsequent liquid biopsy testing. Even low ctDNA concentrations allow the detection of somatic mutations.


Asunto(s)
Recolección de Muestras de Sangre/instrumentación , Recolección de Muestras de Sangre/normas , Ácidos Nucleicos Libres de Células , Análisis Mutacional de ADN/métodos , Análisis Mutacional de ADN/normas , Biopsia Líquida/instrumentación , Biopsia Líquida/normas , Receptores ErbB/genética , Marcadores Genéticos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...