Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiome ; 18(1): 67, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533108

RESUMEN

BACKGROUND: The Kuril-Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. RESULTS: As for the bacterial communities, we found that Proteobacteria (56.1-74.5%), Bacteroidetes (6.5-19.1%), and Actinobacteria (0.9-16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9-91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The ß-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril-Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. CONCLUSIONS: This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril-Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity.

2.
Data Brief ; 48: 109186, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383792

RESUMEN

Samples of Crustacea and Annelida (Polychaeta, Sipuncula, and Hirudinea) were collected in the Bering Sea and the northwestern Pacific Ocean during scientific cruise SO-249 BERING in 2016. Biological samples were collected from 32 locations by the team on-board RV Sonne using a chain bag dredge at depths ranging between 330-5,070 m, and preserved in 96% ethanol. Specimens were morphologically identified to the lowest taxonomic level possible using a Leica M60 stereomicroscope. The generated data here comprise taxonomic information as well as annotated bathymetric and biogeographic information from a total of 78 samples (26 Crustacea, 47 Polychaeta, 4 Sipuncula, and 1 Hirudinea). The dataset was prepared following Darwin Core Biodiversity standards for FAIR data sharing based on Ocean Biodiversity Information System (OBIS) and Global Biodiversity Facility (GBIF) guidelines. The standardised digitised data were then mobilised to both OBIS and GBIF under CC BY 4.0 licence to publicly share and adopt the data. As records of these important marine taxa from bathyal and abyssal depths are sparse, especially from the deep Bering Sea, the herein generated and digitised data aid in filling existing knowledge gaps on their diversity and distribution in that region. As part of the "Biogeography of the NW Pacific deep-sea fauna and their possible future invasions into the Arctic Ocean" (BENEFICIAL) project, this dataset thus not only increases our knowledge in re-assessing and uncovering the deep-sea diversity of these taxa, but also serves policy and management sectors by providing first-hand data for global report assessments.

3.
Environ Pollut ; 333: 122078, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379878

RESUMEN

The global increase of plastic production, linked with an overall plastic misuse and waste mismanagement, leads to an inevitable increase of plastic debris that ends up in our oceans. One of the major sinks of this pollution is the deep-sea floor, which is hypothesized to accumulate in its deepest points, the hadal trenches. Little is known about the magnitude of pollution in these trenches, given the remoteness of these environments, numerous factors influencing the input and sinking behavior of plastic debris from shallower environments. This study represents to the best of our knowledge the largest survey of (macro)plastic debris sampled at hadal depths, down to 9600 m. Industrial packaging and material assignable to fishing activities were the most common debris items in the Kuril Kamchatka trench, most likely deriving from long-distance transport by the Kuroshio extension current (KE) or from regional marine traffic and fishing activities. The chemical analysis by (Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy revealed that the main polymers detected were polyethylene (PE), polypropylene (PP) and nylon. Plastic waste is reaching the depths of the trench, although some of the items were only partially broken down. This finding suggests that complete breakdown into secondary microplastics (MP) may not always occur at the sea surface or though the water column. Due to increased brittleness, plastic debris may break apart upon reaching the hadal trench floor where plastic degrading factors were thought to be, coming off. The KKT's remote location and high sedimentation rates make it a potential site for high levels of plastic pollution, potentially making it one of the world's most heavily contaminated marine areas and an oceanic plastic deposition zone.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental/análisis , Microplásticos , Océanos y Mares
4.
Sci Rep ; 13(1): 7181, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137936

RESUMEN

Paleodictyon is one of the most iconic and widespread of trace fossils in the geological record. However, modern examples are less well known and restricted to deep-sea settings at relatively low latitudes. Here, we report the distribution of Paleodictyon at six abyssal sites near the Aleutian Trench. This study reveals for the first time the presence of Paleodictyon at Subarctic latitudes (51°-53°N) and at depths over 4500 m, although the traces were not observed at stations deeper than 5000 m suggesting that there is some bathymetric constraint for the trace maker. Two small Paleodictyon morphotypes were recognized (average mesh size of 1.81 cm), one having a central hexagonal pattern, the other being characterized by a non-hexagonal pattern. Within the study area, Paleodictyon shows no apparent correlation with local environmental parameters. Finally, based on a worldwide morphological comparison, we conclude that the new Paleodictyon specimens represent distinct ichnospecies that are associated with the relatively eutrophic conditions in this region. Their smaller size may reflect this more eutrophic setting in which sufficient food can be obtained from a smaller area in order to satisfy the energetic requirements of the tracemakers. If so, then Paleodictyon size may provide some assistance when interpreting paleoenvironmental conditions.


Asunto(s)
Fósiles
5.
Ecol Evol ; 13(3): e9867, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36937061

RESUMEN

Trails, burrows, and other "life traces" in sediment provide important evidence for understanding ecology-both of the maker and of other users-and behavioral information often lacking in inaccessible ecosystems, such as the deep sea or those that are already extinct. Here, we report novel sublinear rows of openings in the abyssal plains of the North Pacific, and the first plausible hypothesis for a maker of these constructions. Enigmatic serial burrows have now been recorded in the Pacific and Atlantic deep sea. Based on image and specimen evidence, we propose that these Bering Sea excavations represent amphipod burrows, while the maker of the previously known Mid-Atlantic Ridge constructions remains undetermined. We propose that maerid amphipods could create the Pacific burrows by eating-digging horizontally below the surface along a nutrient-rich layer in the sediment, making the serial openings above them as they go, for conveniently removing excavated sediment as the excavation progresses. These striking structures contribute to local biodiversity, and their maker could be considered a deep-sea ecosystem engineer.

6.
Sci Total Environ ; 838(Pt 2): 156035, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35598673

RESUMEN

Microplastic (MP) pollution affects almost all ecosystems on Earth. Given the increasing plastic production worldwide and the durability of these polymers, concerns arise about the fate of this material in the environment. A candidate to consider as a depositional final sink of MP is the sea floor and its deepest representatives, hadal trenches, as ultimate sinks. In this study, 13 sediment samples were collected with a multiple-corer at depths between 5740 and 9450 m from the Kuril Kamchatka trench (KKT), in the Northwest (NW) Pacific Ocean. These samples were analysed for MP presence in the upper sediment layer, by slicing the first 5 cm of sediment cores into 1 cm horizontal layers. These were compared against each other and between the sampling areas, in order to achieve a detailed picture of the depositional system of the trench and small-scale perturbations such as bioturbation. The analyses revealed the presence of 215 to 1596 MP particles per kg -1 sediment (dry weight), with a polymer composition represented by 14 polymer types and the prevalence of particles smaller than 25 µm. A heterogeneous microplastic distribution through the sediment column and different microplastic concentration and polymer types among sampling stations located in different areas of the trench reflects the dynamics of this environment and the numerous forces that drive the deposition processes and the in situ recast of this pollutant at the trench floor.


Asunto(s)
Microplásticos , Plásticos , Ecosistema , Contaminación Ambiental , Humanos , Océano Pacífico
7.
Biodivers Data J ; 10: e76864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221751

RESUMEN

BACKGROUND: In the framework of the British Antarctic Survey (BAS) Expedion JR 15005 SO-AntEco, held in February-March 2016, the South Orkney Islands seafloor was sampled in order to investigate the distribution and composition of benthic communities around the area. NEW INFORMATION: A new species of the genus Pseudidothea Ohlin, 1901 is described from the Burdwood Bank area (South Orkney Islands). It has been collected during the SO-AntEco JR15005 RRS James Clark Ross expedition under the lead of the British Antarctic Survey (BAS). The new species, Pseudidotheaarmata sp. n., is very similar to P.scutata (Stephensen, 1947); however, it is characterised by peculiar supra-ocular spines and a different tubercular pattern. The study of the species of the Pseudidothea helps to better understand the diversity of the Pseudidotheidae in the Southern Ocean.

8.
Sci Adv ; 8(5): eabj9309, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119936

RESUMEN

Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump.

9.
PeerJ ; 9: e12379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34824910

RESUMEN

The Nordic Seas have one of the highest water-mass diversities in the world, yet large knowledge gaps exist in biodiversity structure and biogeographical distribution patterns of the deep macrobenthic fauna. This study focuses on the marine bottom-dwelling peracarid crustacean taxon Cumacea from northern waters, using a combined approach of morphological and molecular techniques to present one of the first insights into genetic variability of this taxon. In total, 947 specimens were assigned to 77 morphologically differing species, representing all seven known families from the North Atlantic. A total of 131 specimens were studied genetically (16S rRNA) and divided into 53 putative species by species delimitation methods (GMYC and ABGD). In most cases, morphological and molecular-genetic delimitation was fully congruent, highlighting the overall success and high quality of both approaches. Differences were due to eight instances resulting in either ecologically driven morphological diversification of species or morphologically cryptic species, uncovering hidden diversity. An interspecific genetic distance of at least 8% was observed with a clear barcoding gap for molecular delimitation of cumacean species. Combining these findings with data from public databases and specimens collected during different international expeditions revealed a change in the composition of taxa from a Northern Atlantic-boreal to an Arctic community. The Greenland-Iceland-Scotland-Ridge (GIS-Ridge) acts as a geographical barrier and/or predominate water masses correspond well with cumacean taxa dominance. A closer investigation on species level revealed occurrences across multiple ecoregions or patchy distributions within defined ecoregions.

10.
Org Divers Evol ; 21(4): 691-717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658667

RESUMEN

In the deep sea, the phylogeny and biogeography of only a few taxa have been well studied. Although more than 200 species in 32 genera have been described for the asellote isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 from all ocean basins, their phylogenetic relationships are not completely understood. There is little doubt about the close relationship of these families, but the taxonomic position of a number of genera is so far unknown. Based on a combined morphological phylogeny using the Hennigian method with a dataset of 107 described species and a molecular phylogeny based on three markers (COI, 16S, and 18S) with 75 species (most new to science), we could separate Desmosomatidae and Nannoniscidae as separate families. However, we could not support the concept of the subfamilies Eugerdellatinae Hessler, 1970 and Desmosomatinae Hessler, 1970. Most genera of both families were well supported, but several genera appear as para- or even polyphyletic. Within both families, convergent evolution and analogies caused difficulty in defining apomorphies for phylogenetic reconstructions and this is reflected in the results of the concatenated molecular tree. There is no biogeographic pattern in the distribution as the genera occur over the entire Atlantic and Pacific Ocean, showing no specific phylogeographical pattern. Poor resolution at deep desmosomatid nodes may reflect the long evolutionary history of the family and rapid evolutionary radiations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-021-00509-9.

11.
Data Brief ; 39: 107468, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34703859

RESUMEN

Peracarid data were collected in the Southern Ocean and South Atlantic Ocean. Sampling was performed during nine different expeditions on board of RRS James Clark Ross and RV Polarstern, using epibenthic sledges (EBS) at depth ranging between 160-6348 m at 109 locations. The correlation between environmental variables and peracarid abundance was investigated. Abundance data comprise a total of 128570 peracarids (52366 were amphipods, 28516 were cumaceans, 36142 isopods, 5676 mysidaceans and 5870 were tanaidaceans). The presented data are useful to investigate the composition and abundance patterns of peracarid orders at a wide depth range and spatial scale in the Southern Ocean. They can also be reused to compare their abundance with that of other taxa in broader ecological surveys.

12.
R Soc Open Sci ; 8(4): 201983, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33996123

RESUMEN

Changing species assemblages represent major challenges to ecosystems around the world. Retracing these changes is limited by our knowledge of past biodiversity. Natural history collections represent archives of biodiversity and are therefore an unparalleled source to study biodiversity changes. In the present study, we tested the value of natural history collections for reconstructing changes in the abundance and presence of species over time. In total, we scrutinized 17 080 quality-checked records for 242 epibenthic invertebrate species from the North and Baltic Seas collected throughout the last 200 years. Our approaches identified eight previously reported species introductions, 10 range expansions, six of which are new to science, as well as the long-term decline of 51 marine invertebrate species. The cross-validation of our results with published accounts of endangered species and neozoa of the area confirmed the results for two of the approaches for 49 to 55% of the identified species, and contradicted our results for 9 to 10%. The results based on relative record trends were less validated. We conclude that, with the proper approaches, natural history collections are an unmatched resource for recovering early species introductions and declines.

13.
Environ Pollut ; 269: 116095, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257152

RESUMEN

The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the "trash bins of the oceans" and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143-8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg-1 sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Océanos y Mares , Océano Pacífico , Plásticos , Contaminantes Químicos del Agua/análisis
14.
Proc Natl Acad Sci U S A ; 117(27): 15450-15459, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554606

RESUMEN

Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2 of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.


Asunto(s)
Organismos Acuáticos/fisiología , Biodiversidad , Evolución Biológica , Seguimiento de Parámetros Ecológicos/métodos , Tecnología de Sensores Remotos , Acústica , Animales , Océano Atlántico , Restauración y Remediación Ambiental
15.
PLoS One ; 14(10): e0224249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648244

RESUMEN

Natural history collections are fundamental for biodiversity research as well as for any applied environment-related research. These collections can be seen as archives of earth´s life providing the basis to address highly relevant scientific questions such as how biodiversity changes in certain environments, either through evolutionary processes in a geological timescale, or by man-made transformation of habitats throughout the last decades and/or centuries. A prominent example is the decline of the European flat oyster Ostrea edulis Linneaus, 1758 in the North Sea and the concomitant invasion of the common limpet slipper Crepidula fornicata, which has been implicated to have negative effects on O. edulis. We used collections to analyse population changes in both species in the North Sea. In order to reconstruct the change in distribution and diversity over the past 200 years, we combined the temporal and spatial information recorded with the collected specimens contained in several European natural history collections. Our data recover the decline of O. edulis in the North Sea from the 19th century to the present and the process of invasion of C. fornicata. Importantly, the decline of O. edulis was nearly completed before C. fornicata appeared in the North Sea, suggesting that the latter had nothing to do with the local extinction of O. edulis in the North Sea.


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Ecosistema , Especies Introducidas/historia , Ostrea/fisiología , Animales , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Mar del Norte
16.
Sci Rep ; 9(1): 9260, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239511

RESUMEN

Laonice Malmgren, 1867 (Annelida: Spionidae) is a common polychaete genus in the deep-sea. Although most species are quite well studied morphologically, fragmentation and other damage that occurs during sampling often hampers morphological species identification of deep-sea specimens. In this study, we employ three molecular markers (16S, COI and 18S) to study the biodiversity and the distribution patterns of Laonice from the tropical North Atlantic and the Puerto Rico Trench. Based upon different molecular analyses (Automated Barcode Gap Discovery, pairwise genetic distances, phylogenetics, haplotype networks) we were able to identify and differentiate eight Laonice species. Up to four of these species co-occurred sympatrically at the same station. The majority of species were found at multiple stations and two species in the eastern as well as western Atlantic had ranges of up to 4,000 km. Genetic differentiation across these extensive geographic distances was very low. Surprisingly, one 16S haplotype was shared between individuals 2,776 km apart and individuals from the Caribbean and the abyssal plain in the eastern Atlantic (>3,389 km) differed in only a single mutation in 16S. Our results suggest that members of this genus successfully disperse across large geographic distances and are largely unaffected by topographic barriers.


Asunto(s)
Anélidos/clasificación , Anélidos/genética , Biodiversidad , Filogenia , ARN Ribosómico 16S/análisis , ARN Ribosómico 18S/análisis , Animales , Puerto Rico
17.
Sci Rep ; 9(1): 9303, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243329

RESUMEN

Global scale analyses have recently revealed that the latitudinal gradient in marine species richness is bimodal, peaking at low-mid latitudes but with a dip at the equator; and that marine species richness decreases with depth in many taxa. However, these overall and independently studied patterns may conceal regional differences that help support or qualify the causes in these gradients. Here, we analysed both latitudinal and depth gradients of species richness in the NW Pacific and its adjacent Arctic Ocean. We analysed 324,916 distribution records of 17,414 species from 0 to 10,900 m depth, latitude 0 to 90°N, and longitude 100 to 180°N. Species richness per c. 50 000 km2 hexagonal cells was calculated as alpha (local average), gamma (regional total) and ES50 (estimated species for 50 records) per latitudinal band and depth interval. We found that average ES50 and gamma species richness decreased per 5° latitudinal bands and 100 m depth intervals. However, average ES50 per hexagon showed that the highest species richness peaked around depth 2,000 m where the highest total number of species recorded. Most (83%) species occurred in shallow depths (0 to 500 m). The area around Bohol Island in the Philippines had the highest alpha species richness (more than 8,000 species per 50,000 km2). Both alpha and gamma diversity trends increased from the equator to latitude 10°N, then further decreased, but reached another peak at higher latitudes. The latitudes 60-70°N had the lowest gamma and alpha diversity where there is almost no ocean in our study area. Model selection on Generalized Additive Models (GAMs) showed that the combined effects of all environmental predictors produced the best model driving species richness in both shallow and deep sea. The results thus support recent hypotheses that biodiversity, while highest in the tropics and coastal depths, is decreasing at the equator and decreases with depth below ~2000 m. While we do find the declines of species richness with latitude and depth that reflect temperature gradients, local scale richness proved poorly correlated with many environmental variables. This demonstrates that while regional scale patterns in species richness may be related to temperature, that local scale richness depends on a greater variety of variables.

18.
Proc Biol Sci ; 285(1884)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068675

RESUMEN

An understanding of the balance of interspecific competition and the physical environment in structuring organismal communities is crucial because those communities structured primarily by their physical environment typically exhibit greater sensitivity to environmental change than those structured predominantly by competitive interactions. Here, using detailed phylogenetic and functional information, we investigate this question in macrofaunal assemblages from Northwest Atlantic Ocean continental slopes, a high seas region projected to experience substantial environmental change through the current century. We demonstrate assemblages to be both phylogenetically and functionally under-dispersed, and thus conclude that the physical environment, not competition, may dominate in structuring deep-ocean communities. Further, we find temperature and bottom trawling intensity to be among the environmental factors significantly related to assemblage diversity. These results hint that deep-ocean communities are highly sensitive to their physical environment and vulnerable to environmental perturbation, including by direct disturbance through fishing, and indirectly through the changes brought about by climate change.


Asunto(s)
Organismos Acuáticos , Ecosistema , Explotaciones Pesqueras , Animales , Océano Atlántico , Cambio Climático , Filogenia , Temperatura
19.
Glob Chang Biol ; 24(10): 4667-4681, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29999582

RESUMEN

How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice-associated ("sympagic") microalgae could serve as a high-quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae-produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA-specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae-produced carbon (αIce ) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce : 54%-67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce : 8%-40%). Differences in αIce estimates between FAs associated with short-term vs. long-term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter-active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m-2  day-1 . This indicates that copepods and other ice-dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae-produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.


Asunto(s)
Carbono/metabolismo , Ecosistema , Cubierta de Hielo , Fitoplancton/metabolismo , Estaciones del Año , Zooplancton/metabolismo , Animales , Regiones Antárticas , Ciclo del Carbono , Isótopos de Carbono , Ácidos Grasos/metabolismo , Cadena Alimentaria
20.
PeerJ ; 6: e4887, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892501

RESUMEN

The bathyal to hadal deep sea of north-west Pacific Ocean was recently intensively sampled during four international expeditions (KuramBio I and II, SoJaBio and SokhoBio). A large amphipod, Rhachotropis saskia n. sp., was sampled in the Kuril-Kamchatka Trench and increases the number of described hadal species of that area to eight. A detailed description of the new species is provided, including illustrations, scanning-microscope images and molecular analysis. This predatory species was sampled at both continental and ocean abyssal margins of the Kuril-Kamchatka Trench as well as at hadal depths of the trench. The wide bathymetric distribution of the new species over more than 3,000 m is confirmed by molecular analysis, indicating that the Kuril Kamchatka Trench is not a distribution barrier for this species. However, the molecular analysis indicated the presence of isolation by distance of the populations of the studied taxon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...