Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 475(1): 49-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36190562

RESUMEN

Nasal respiration influences brain dynamics by phase-entraining neural oscillations at the same frequency as the breathing rate and by phase-modulating the activity of faster gamma rhythms. Despite being widely reported, we still do not understand the functional roles of respiration-entrained oscillations. A common hypothesis is that these rhythms aid long-range communication and provide a privileged window for synchronization. Here we tested this hypothesis by analyzing electrocorticographic (ECoG) recordings in mice, rats, and cats during the different sleep-wake states. We found that the respiration phase modulates the amplitude of cortical gamma oscillations in the three species, although the modulated gamma frequency bands differed with faster oscillations (90-130 Hz) in mice, intermediate frequencies (60-100 Hz) in rats, and slower activity (30-60 Hz) in cats. In addition, our results also show that respiration modulates olfactory bulb-frontal cortex synchronization in the gamma range, in which each breathing cycle evokes (following a delay) a transient time window of increased gamma synchrony. Long-range gamma synchrony modulation occurs during quiet and active wake states but decreases during sleep. Thus, our results suggest that respiration-entrained brain rhythms orchestrate communication in awake mammals.


Asunto(s)
Ritmo Gamma , Respiración , Ratas , Ratones , Gatos , Animales , Encéfalo , Bulbo Olfatorio , Sueño , Electroencefalografía , Mamíferos
2.
J Sleep Res ; 32(3): e13777, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398708

RESUMEN

Rapid eye movement (REM) sleep in rodents is defined by the presence of theta rhythm in the absence of movement. The amplitude and frequency of theta oscillations have been used to distinguish between tonic and phasic REM sleep. However, tonic REM sleep has not been further subdivided, although characteristics of network oscillations such as cross-frequency coupling between theta and gamma vary within this sub-state. Recently, it has been shown that theta-gamma coupling depends on an optimal breathing rate of ~5 Hz. The frequency of breathing varies strongly throughout REM sleep, and the duration of single REM sleep episodes ranges from several seconds to minutes, whereby short episodes predominate. Here we studied the relation between breathing frequency, accelerometer activity, and the length of REM sleep periods. We found that small movements detected with three-dimensional accelerometry positively correlate with breathing rate. Interestingly, breathing is slow in short REM sleep episodes, while faster respiration regimes exclusively occur after a certain delay in longer REM sleep episodes. Thus, merging REM sleep episodes of different lengths will result in a predominance of slow respiration due to the higher occurrence of short REM sleep periods. Moreover, our results reveal that not only do phasic REM sleep epochs predominantly occur during long REM sleep episodes, but that the long episodes also have faster theta and higher gamma activity. These observations suggest that REM sleep can be further divided from a physiological point of view depending on its duration. Higher levels of arousal during REM sleep, indicated by higher breathing rates, can only be captured in long REM sleep episodes.


Asunto(s)
Nivel de Alerta , Sueño REM , Sueño REM/fisiología , Nivel de Alerta/fisiología , Ritmo Teta/fisiología , Respiración
3.
Pflugers Arch ; 475(1): 65-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982341

RESUMEN

Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.


Asunto(s)
Corteza Cerebral , Hipocampo , Ratones , Animales , Hipocampo/fisiología , Lóbulo Parietal , Sueño REM/fisiología , Respiración , Ritmo Teta/fisiología
4.
J Neurophysiol ; 127(3): 801-817, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35171722

RESUMEN

The simultaneous, local integration of information from widespread brain regions is an essential feature of cortical computation and particularly relevant for multimodal association areas such as the posterior parietal cortex. Slow, rhythmic fluctuations in the local field potentials (LFPs) are assumed to constitute a global signal aiding interregional communication through the long-range synchronization of neuronal activity. Recent work demonstrated the brain-wide presence of a novel class of slow neuronal oscillations that are entrained by nasal respiration. However, whether there are differences in the influence of the respiration-entrained rhythm (RR) and the endogenous theta (θ) rhythm over local networks is unknown. In this work, we aimed at characterizing the impact of both classes of oscillations on neuronal activity in the posterior parietal cortex of mice. We focused our investigations on a θ-dominated state (rapid eye movement sleep) and an RR-dominated state (wake immobility). Using linear silicon probes implanted along the dorsoventral cortical axis, we found that the LFP-depth distributions of both rhythms show differences in amplitude and coherence but no phase shift. Using tetrode recordings, we demonstrate that a substantial fraction of parietal neurons is modulated by either RR or θ or even by both rhythms simultaneously. Interestingly, the phase and cortical depth dependence of spike-field coupling differ for these oscillations. We further show through intracellular recordings in urethane-anesthetized mice that synaptic inhibition is likely to play a role in generating respiration-entrainment at the membrane potential level. We conclude that θ and respiration differentially affect neuronal activity in the parietal cortex.NEW & NOTEWORTHY Nasal respiration generates a rhythmic signal that entrains large portions of the mammalian brain into respiration-coupled field potentials. Here, we report the simultaneous presence of respiratory rhythm (RR) and θ oscillations in the parietal association cortex of mice. Despite their overlapping frequencies, both rhythms differ in their state-dependent power and differentially entrain the discharge behavior of units. We conclude that network activity in the parietal cortex is synchronized by two different physiological oscillation patterns.


Asunto(s)
Respiración , Ritmo Teta , Animales , Encéfalo/fisiología , Mamíferos , Ratones , Lóbulo Parietal , Sueño REM/fisiología , Ritmo Teta/fisiología
5.
Sleep ; 44(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34297128

RESUMEN

Temporal coupling between theta and gamma oscillations is a hallmark activity pattern of several cortical networks and becomes especially prominent during REM sleep. In a parallel approach, nasal breathing has been recently shown to generate phase-entrained network oscillations which also modulate gamma. Both slow rhythms (theta and respiration-entrained oscillations) have been suggested to aid large-scale integration but they differ in frequency, display low coherence, and modulate different gamma sub-bands. Respiration and theta are therefore believed to be largely independent. In the present work, however, we report an unexpected but robust relation between theta-gamma coupling and respiration in mice. Interestingly, this relation takes place not through the phase of individual respiration cycles, but through respiration rate: the strength of theta-gamma coupling exhibits an inverted V-shaped dependence on breathing rate, leading to maximal coupling at breathing frequencies of 4-6 Hz. Noteworthy, when subdividing sleep epochs into phasic and tonic REM patterns, we find that breathing differentially relates to theta-gamma coupling in each state, providing new evidence for their physiological distinctiveness. Altogether, our results reveal that breathing correlates with brain activity not only through phase-entrainment but also through rate-dependent relations with theta-gamma coupling. Thus, the link between respiration and other patterns of cortical network activity is more complex than previously assumed.


Asunto(s)
Sueño REM , Ritmo Teta , Animales , Ratones , Respiración , Frecuencia Respiratoria , Sueño/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología
6.
J Neurosci ; 41(24): 5229-5242, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33963051

RESUMEN

Nasal breathing generates a rhythmic signal which entrains cortical network oscillations in widespread brain regions on a cycle-to-cycle time scale. It is unknown, however, how respiration and neuronal network activity interact on a larger time scale: are breathing frequency and typical neuronal oscillation patterns correlated? Is there any directionality or temporal relationship? To address these questions, we recorded field potentials from the posterior parietal cortex of mice together with respiration during REM sleep. In this state, the parietal cortex exhibits prominent θ and γ oscillations while behavioral activity is minimal, reducing confounding signals. We found that the instantaneous breathing frequency strongly correlates with the instantaneous frequency and amplitude of both θ and γ oscillations. Cross-correlograms and Granger causality revealed specific directionalities for different rhythms: changes in θ activity precede and Granger-cause changes in breathing frequency, suggesting control by the functional state of the brain. On the other hand, the instantaneous breathing frequency Granger causes changes in γ frequency, suggesting that γ is influenced by a peripheral reafference signal. These findings show that changes in breathing frequency temporally relate to changes in different patterns of rhythmic brain activity. We hypothesize that such temporal relations are mediated by a common central drive likely to be located in the brainstem.


Asunto(s)
Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Respiración , Sueño REM/fisiología , Animales , Ondas Encefálicas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Front Neurosci ; 15: 613801, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642977

RESUMEN

Experiments on pain processing in animals face several methodological challenges including the reproducible application of painful stimuli. Ideally, behavioral and physiological correlates of pain should be assessed in freely behaving mice, avoiding stress, fear or behavioral restriction as confounding factors. Moreover, the time of pain-evoked brain activity should be precisely related to the time of stimulation, such that pain-specific neuronal activity can be unambiguously identified. This can be achieved with laser-evoked heat stimuli which are also well established for human pain research. However, laser-evoked neuronal potentials are rarely investigated in awake unrestrained rodents, partially due to the practical difficulties in precisely and reliably targeting and triggering stimulation. In order to facilitate such studies we have developed a versatile stimulation and recording system for freely moving mice. The custom-made apparatus can provide both laser- and mechanical stimuli with simultaneous recording of evoked potentials and behavioral responses. Evoked potentials can be recorded from superficial and deep brain areas showing graded pain responses which correlate with pain-specific behavioral reactions. Non-painful mechanical stimuli can be applied as a control, yielding clearly different electrophysiological and behavioral responses. The apparatus is suited for simultaneous acquisition of precisely timed electrophysiological and behavioral evoked responses in freely moving mice. Besides its application in pain research it may be also useful in other fields of sensory physiology.

8.
IBRO Rep ; 9: 195-206, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32944670

RESUMEN

The experience of pain involves the activation of multiple brain areas. Pain-specific activity patterns within and between these local networks remain, however, largely unknown. We measured neuronal network oscillations in different relevant regions of the mouse brain during acute pain, induced by subcutaneous injection of capsaicin into the left hind paw. Field potentials were recorded from primary somatosensory cortex, anterior cingulate cortex (ACC), posterior insula, ventral posterolateral thalamic nucleus, parietal cortex, central nucleus of the amygdala and olfactory bulb. Analysis included power spectra of local signals as well as interregional coherences and cross-frequency coupling (CFC). Capsaicin injection caused hypersensitivity to mechanical stimuli for at least one hour. At the same time, CFC between low (1-12 Hz) and fast frequencies (80-120 Hz) was increased in the ACC, as well as interregional coherence of low frequency oscillations (< 30 Hz) between several networks. However, these changes were not significant anymore after multiple comparison corrections. Using a variable selection method (elastic net) and a logistic regression classifier, however, the pain state was reliably predicted by combining parameters of power and coherence from various regions. Distinction between capsaicin and saline injection was also possible when data were restricted to frequencies <30 Hz, as used in clinical electroencephalography (EEG). Our findings indicate that changes of distributed brain oscillations may provide a functional signature of acute pain or pain-related alterations in activity.

9.
Sci Rep ; 8(1): 6432, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691421

RESUMEN

Slow brain oscillations are usually coherent over long distances and thought to link distributed cell assemblies. In mice, theta (5-10 Hz) stands as one of the most studied slow rhythms. However, mice often breathe at theta frequency, and we recently reported that nasal respiration leads to local field potential (LFP) oscillations that are independent of theta. Namely, we showed respiration-coupled oscillations in the hippocampus, prelimbic cortex, and parietal cortex, suggesting that respiration could impose a global brain rhythm. Here we extend these findings by analyzing LFPs from 15 brain regions recorded simultaneously with respiration during exploration and REM sleep. We find that respiration-coupled oscillations can be detected in parallel with theta in several neocortical regions, from prefrontal to visual areas, and also in subcortical structures such as the thalamus, amygdala and ventral hippocampus. They might have escaped attention in previous studies due to the absence of respiration monitoring, the similarity with theta oscillations, and the highly variable peak frequency. We hypothesize that respiration-coupled oscillations constitute a global brain rhythm suited to entrain distributed networks into a common regime. However, whether their widespread presence reflects local network activity or is due to volume conduction remains to be determined.


Asunto(s)
Encéfalo/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología , Animales , Encéfalo/metabolismo , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Respiración , Sueño/fisiología
10.
Trends Neurosci ; 41(4): 186-197, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29429805

RESUMEN

We revisit recent evidence showing that nasal respiration entrains oscillations at the same frequency as breathing in several regions of the rodent brain. Moreover, respiration modulates the amplitude of a specific gamma sub-band (70-120Hz), most prominently in frontal regions. Since rodents often breathe at delta and theta frequencies, we caution that previous studies on delta and theta power and their cross-regional synchrony, as well as on delta-gamma and theta-gamma coupling, may have detected the respiration-entrained rhythm and respiration-gamma coupling. We argue that the simultaneous tracking of respiration along with electrophysiological recordings is necessary to properly identify brain oscillations. We hypothesize that respiration-entrained oscillations aid long-range communication in the brain.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Respiración , Ritmo Teta/fisiología , Animales , Electroencefalografía/métodos , Humanos
11.
Proc Natl Acad Sci U S A ; 114(17): 4519-4524, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396398

RESUMEN

Theta oscillations (4-12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30-160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ2). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ2 and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ1) and 120- to 160-Hz (γ3) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.

12.
Neural Plast ; 2016: 4570831, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27247803

RESUMEN

It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Respiración , Sueño/fisiología , Vigilia/fisiología , Animales , Femenino , Masculino , Ratones
13.
Sci Rep ; 6: 21948, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26905287

RESUMEN

Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer's disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Disfunción Cognitiva/fisiopatología , Ritmo Gamma , Hipocampo/fisiopatología , Lóbulo Parietal/fisiopatología , Ritmo Teta , Precursor de Proteína beta-Amiloide/genética , Animales , Disfunción Cognitiva/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Técnicas Estereotáxicas
14.
J Neurosci ; 36(1): 162-77, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740658

RESUMEN

We have recently described a slow oscillation in the hippocampus of urethane-anesthetized mice, which couples to nasal respiration and is clearly distinct from co-occurring theta oscillations. Here we set out to investigate whether such type of patterned network activity, which we named "hippocampal respiration rhythm" (HRR), also occurs in awake mice. In freely moving mice, instantaneous respiration rate is extremely variable, and respiration is superimposed by bouts of sniffing. To reduce this variability, we clamped the behavior of the animal to either awake immobility or treadmill running by using a head-fixed setup while simultaneously recording respiration and field potentials from the olfactory bulb (OB) and hippocampus. Head-fixed animals often exhibited long periods of steady respiration rate during either immobility or running, which allowed for spectral and coherence analyses with a sufficient frequency resolution to sort apart respiration and theta activities. We could thus demonstrate the existence of HRR in awake animals, namely, a respiration-entrained slow rhythm with highest amplitude at the dentate gyrus. HRR was most prominent during immobility and running with respiration rates slower than theta oscillations. Nevertheless, HRR could also be faster than theta. Discharges of juxtacellularly recorded cells in CA1 and dentate gyrus were modulated by HRR and theta oscillations. Granger directionality analysis revealed that HRR is caused by the OB and that theta oscillations in OB are caused by the hippocampus. Our results suggest that respiration-coupled oscillations aid the exchange of information between olfactory and memory networks. SIGNIFICANCE STATEMENT: Olfaction is a major sense in rodents. In consequence, the olfactory bulb (OB) should be able to transmit information to downstream regions. Here we report potential mechanisms underlying such information transfer. We demonstrate the existence of a respiration-entrained rhythm in the hippocampus of awake mice. Frequencies of the hippocampal respiration rhythm (HRR) overlap with classical theta oscillations, but both rhythms are clearly distinct. HRR is most prominent in the dentate gyrus, especially when respiration is slower than theta frequency. Discharges of neurons in CA1 and dentate gyrus are modulated by both HRR and theta. Directionality analysis shows that HRR is caused by the OB. Our results suggest that respiration-coupled oscillations aid the exchange of information between olfactory and memory networks.


Asunto(s)
Relojes Biológicos/fisiología , Hipocampo/fisiología , Centro Respiratorio/fisiopatología , Frecuencia Respiratoria/fisiología , Ritmo Teta/fisiología , Vigilia/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Neurosci ; 34(17): 5949-64, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760854

RESUMEN

Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominent θ oscillations at frequencies between 4 and 12 Hz, which are superimposed by phase-coupled γ oscillations (30-100 Hz). These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near-θ frequencies (2-4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generated θ oscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differently to γ oscillations, and are abolished when nasal airflow is bypassed by tracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent θ oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.


Asunto(s)
Ondas Encefálicas/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Respiración , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
16.
Neuropharmacology ; 65: 123-33, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23063689

RESUMEN

Benzodiazepines have a broad spectrum of clinical applications including sedation, anti-anxiety, and anticonvulsive therapy. At the cellular level, benzodiazepines are allosteric modulators of GABA(A) receptors; they increase the efficacy of inhibition in neuronal networks by prolonging the duration of inhibitory postsynaptic potentials. This mechanism of action predicts that benzodiazepines reduce the frequency of inhibition-driven network oscillations, consistent with observations from human and animal EEG. However, most of existing data are restricted to frequency bands below ∼30 Hz. Recent data suggest that faster cortical network rhythms are critically involved in several behavioral and cognitive tasks. We therefore analyzed diazepam effects on a large range of cortical network oscillations in freely moving mice, including theta (4-12 Hz), gamma (40-100 Hz) and fast gamma (120-160 Hz) oscillations. We also investigated diazepam effects over the coupling between theta phase and the amplitude fast oscillations. We report that diazepam causes a global slowing of oscillatory activity in all frequency domains. Oscillation power was changed differently for each frequency domain, with characteristic differences between active wakefulness, slow-wave sleep and REM sleep. Cross-frequency coupling strength, in contrast, was mostly unaffected by diazepam. Such state- and frequency-dependent actions of benzodiazepines on cortical network oscillations may be relevant for their specific cognitive effects. They also underline the strong interaction between local network oscillations and global brain states.


Asunto(s)
Diazepam/farmacología , Electroencefalografía/efectos de los fármacos , Neocórtex/efectos de los fármacos , Neocórtex/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Animales , Electroencefalografía/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
17.
Prog Neurobiol ; 100: 1-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23022096

RESUMEN

We review recent evidence for a novel type of fast cortical oscillatory activity that occurs circumscribed between 110 and 160Hz, which we refer to as high-frequency oscillations (HFOs). HFOs characteristically occur modulated by theta phase in the hippocampus and neocortex. HFOs can co-occur with gamma oscillations nested in the same theta cycle, in which case they typically peak at different theta phases. Despite the overlapping frequency ranges, HFOs differ from hippocampal ripple oscillations in some key characteristics, including amplitude, region of occurrence, associated behavioral state, and activity time-course (sustained vs intermittent). Recent in vitro evidence suggests that HFOs depend on fast GABAergic transmission and may also depend on axonal gap junctions. The functional role of HFOs is currently unclear. Both hippocampal and neocortical theta-HFO coupling increase during REM sleep, suggesting a role for HFOs in memory processing.


Asunto(s)
Relojes Biológicos/fisiología , Hipocampo/fisiología , Neocórtex/fisiología , Animales , Humanos , Memoria/fisiología , Sueño REM/fisiología , Análisis Espectral
18.
J Sleep Res ; 21(6): 630-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22812730

RESUMEN

Spatiotemporal activity patterns of neurones are organized by different types of coherent network oscillations. Frequency content and cross-frequency coupling of cortical oscillations are strongly state-dependent, indicating that different patterns of wakefulness or sleep, respectively, support different cognitive or mnestic processes. It is therefore crucial to analyse specific sleep patterns with respect to their oscillations, including interaction between fast and slow rhythms. Here we report the oscillation profile of phasic rapid eye movement (REM), a form of REM sleep which has been implicated in hippocampus-dependent memory processing. In all analysed frequency bands (theta, gamma and fast gamma, respectively) we find higher frequencies and higher power in phasic REM compared to tonic REM or wakefulness. Theta-phase coupling of fast oscillations, however, was highest in tonic REM, followed by phasic REM and wakefulness. Our data suggest different roles of phasic and tonic REM for information processing or memory formation during sleep.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Sueño REM/fisiología , Animales , Encéfalo/cirugía , Cerebelo/fisiología , Cerebelo/cirugía , Electrodos Implantados , Electroencefalografía/instrumentación , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Lóbulo Parietal/fisiología , Lóbulo Parietal/cirugía , Ritmo Teta/fisiología , Factores de Tiempo , Vigilia
19.
PLoS One ; 6(12): e28489, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163023

RESUMEN

BACKGROUND: The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations. It is likely that such cross-frequency coupling supports specific tasks including behavioural choice and working memory. PRINCIPAL FINDINGS: We analyzed temporal coupling between high-frequency oscillations and EEG theta activity (4-12 Hz) in recordings from mouse parietal neocortex. Theta was exclusively present during active wakefulness and REM-sleep. Fast oscillations occurred in two separate frequency bands: gamma (40-100 Hz) and fast gamma (120-160 Hz). Theta, gamma and fast gamma were more prominent during active wakefulness as compared to REM-sleep. Coupling between theta and the two types of fast oscillations, however, was more pronounced during REM-sleep. This state-dependent cross-frequency coupling was particularly strong for theta-fast gamma interaction which increased 9-fold during REM as compared to active wakefulness. Theta-gamma coupling increased only by 1.5-fold. SIGNIFICANCE: State-dependent cross-frequency-coupling provides a new functional characteristic of REM-sleep and establishes a unique property of neocortical fast gamma oscillations. Interactions between defined patterns of slow and fast network oscillations may serve selective functions in sleep-dependent information processing.


Asunto(s)
Encéfalo/fisiología , Oscilometría/métodos , Sueño REM/fisiología , Animales , Conducta Animal , Electroencefalografía/métodos , Electrofisiología/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología , Neuronas/fisiología , Lóbulo Parietal/patología , Poder Psicológico , Sueño/fisiología , Factores de Tiempo
20.
Brain Res ; 1322: 59-71, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20123089

RESUMEN

There is growing interest in sleep research and increasing demand for screening of circadian rhythms in genetically modified animals. This requires reliable sleep stage scoring programs. Present solutions suffer, however, from the lack of flexible adaptation to experimental conditions and unreliable selection of stage-discriminating variables. EEG was recorded in freely moving C57BL/6 mice and different sets of frequency variables were used for analysis. Parameters included conventional power spectral density functions as well as period-amplitude analysis. Manual staging was compared with the performance of two different supervised classifiers, linear discriminant analysis (LDA) and Classification Tree. Gamma activity was particularly high during REM (rapid eye movements) sleep and waking. Four out of 73 variables were most effective for sleep-wake stage separation: amplitudes of upper gamma-, delta- and upper theta-frequency bands and neck muscle EMG. Using small sets of training data, LDA produced better results than Classification Tree or a conventional threshold formula. Changing epoch duration (4 to 10s) had only minor effects on performance with 8 to 10s yielding the best results. Gamma and upper theta activity during REM sleep is particularly useful for sleep-wake stage separation. Linear discriminant analysis performs best in supervised automatic staging procedures. Reliable semi-automatic sleep scoring with LDA substantially reduces analysis time.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Electromiografía , Femenino , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos del Cuello/inervación , Músculos del Cuello/fisiología , Procesamiento de Señales Asistido por Computador , Sueño REM/fisiología , Ritmo Teta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA