Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(5): e2300725, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38346258

RESUMEN

Over the years, pharmacological agents bearing antioxidant merits arose as beneficial in the prophylaxis and treatment of various health conditions. Hazardous effects of radical species hyperproduction disrupt normal cell functioning, thus increasing the possibility for the development of various oxidative stress-associated disorders, such as cancer. Contributing to the efforts for efficient antioxidant drug discovery, a thorough in vitro and in silico assessment of antioxidant properties of 14 newly synthesized N-pyrocatechoyl and N-pyrogalloyl hydrazones (N-PYRs) was accomplished. All compounds exhibited excellent antioxidant potency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The extensive in silico analysis revealed multiple favorable features of N-PYRs to inactivate harmful radical species, which supported the obtained in vitro results. Also, in silico experiments provided insights into the preferable antioxidant pathways. Prompted by these findings, the cytotoxicity effects and the influence on the redox status of cancer HCT-116 cells and healthy fibroblasts MRC-5 were evaluated. These investigations exposed four analogs exhibiting both cytotoxicity and selectivity toward cancer cells. Furthermore, the frequently uncovered antimicrobial potency of hydrazone-type hybrids encouraged investigations on G+ and G- bacterial strains, which revealed the antibacterial potency of several N-PYRs. These findings highlighted the N-PYRs as excellent antioxidant agents endowed with cytotoxic and antibacterial features.


Asunto(s)
Antibacterianos , Antineoplásicos , Antioxidantes , Hidrazonas , Pruebas de Sensibilidad Microbiana , Humanos , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Células HCT116 , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Relación Dosis-Respuesta a Droga
2.
RSC Adv ; 13(5): 2884-2895, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756409

RESUMEN

The pyrazolone class comprises a variety of hybrid compounds displaying diverse biological actions. Although studied for decades, these compounds are still of interest due to their facile chemical transformations. In our previous work, we presented the synthetic route of functionalised pyrazolone derivatives. The presence of pyrazolone structural motif in many drugs, such as edaravone, prompted us to investigate the antioxidant features of the selected compounds. In this paper, we provide an extensive in vitro and in silico description of the antioxidant properties of selected pyrazolone analogues. The obtained in vitro results revealed their great antiradical potency against the DPPH radical (IC50 values in the 2.6-7.8 µM range), where the best results were obtained for analogues bearing a catechol moiety. Density functional theory (DFT) was used to assess their antioxidant capacity from the thermodynamic aspect. Here, good agreement with in vitro results was achieved. DFT was employed for the prediction of the most preferable radical scavenging pathway, also. In polar solvents, the SPLET mechanism is a favourable scavenging route, whereas in nonpolar solvents the HAT is slightly predominant. Furthermore, antioxidant mechanisms were studied in the presence of relevant reactive oxygen species. The obtained values of the reaction enthalpies with the selected radicals revealed that HAT is slightly prevailing in polar solvents, while the SPLET mechanism is dominant in nonpolar solvents. Regarding the well-known antioxidant features of the drug edaravone, these findings represent valuable data for this pyrazolone class and could be used as the basis for further investigations.

3.
R Soc Open Sci ; 9(6): 211853, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706666

RESUMEN

Cancer is still a relentless public health issue. Particularly, colorectal cancer is the third most prevalent cancer in men and the second in women. Moreover, cancer development and growth are associated with various cell disorders, such as oxidative stress and inflammation. The quest for efficient therapeutics is a challenging task, especially when it comes to achieving both cytotoxicity and selectivity. Herein, five series of phenolic N-acylhydrazones were synthesized and evaluated for their antioxidant potency, as well as their influence on HCT-116 and MRC-5 cells viability. Among 40 examined analogues, 20 of them expressed antioxidant activity against the DPPH radical. Furthermore, density functional theory was employed to estimate the antioxidant potency of the selected analogues from the thermodynamical aspect, as well as the preferable free-radical scavenging pathway. Cytotoxicity assay exposed enhanced selectivity of a number of analogues toward cancer cells. The structure-activity analysis revealed the impact of the type and position of the functional groups on both cell viability and selectivity toward cancer cells.

4.
RSC Adv ; 12(25): 16054-16070, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35733695

RESUMEN

Coronavirus outbreak is still a major public health concern. The high mutation ability of SARS-CoV-2 periodically delivers more transmissible and dangerous variants. Hence, the necessity for an efficient and inexpensive antiviral agent is urgent. In this work, pyrazolone-type compounds were synthesised, characterised using spectroscopic methods and theoretical tools, and evaluated in silico against proteins of SARS-CoV-2 responsible for host cell entry and reproduction processes, i.e., spike protein (S), Mpro, and PLpro. Five of twenty compounds are newly synthesised. In addition, the crystal structure of a pyrazolone derivative bearing a vanillin moiety is determined. The obtained in silico results indicate a more favourable binding affinity of pyrazolone analogues towards Mpro, and PLpro in comparison to drugs lopinavir, remdesivir, chloroquine, and favipiravir, while in the case of S protein only lopinavir exerted higher binding affinity. Also, the investigations were performed on ACE2 and the spike RBD-ACE2 complex. The obtained results for these proteins suggest that selected compounds could express antiviral properties by blocking the binding to the host cell and viral spreading, also. Moreover, several derivatives expressed multitarget antiviral action, blocking both binding and reproduction processes. Additionally, in silico ADME/T calculations predicted favourable features of the synthesised compounds, i.e., drug-likeness, oral bioavailability, as well as good pharmacokinetic parameters related to absorption, metabolism, and toxicity. The obtained results imply the great potential of synthesised pyrazolones as multitarget agents against SARS-CoV-2 and represent a valuable background for further in vitro investigations.

5.
Mol Divers ; 26(6): 3115-3128, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35147861

RESUMEN

Selected salicylidene imines were evaluated for their antioxidant and cytotoxic potentials. Several of them exerted potent scavenging capacity towards ABTS radical and hydrogen peroxide. The insight into the preferable antioxidative mechanism was reached employing density functional theory. In the absence of free radicals, the SPLET mechanism is dominant in polar surroundings, while HAT is prevailing in a non-polar environment. The results obtained for the reactions of the most active compounds with some medically relevant radicals pointed out competition between HAT and SPLET mechanisms. The assessment of their cytotoxic properties revealed inhibition of ER-a human breast adenocarcinoma cells or estrogen-independent prostate cancer cells. Molecular docking study with the cyclooxygenase (COX) 2 enzyme was performed to examine the most probable bioactive conformations and possible interactions between the tested derivatives and COX-2 binding pocket.


Asunto(s)
Antioxidantes , Iminas , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Iminas/farmacología , Simulación del Acoplamiento Molecular , Radicales Libres
6.
Med Chem ; 17(8): 807-819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32484771

RESUMEN

BACKGROUND: From the point of view of medicinal chemistry, compounds containing phenolic and pyrazolic moiety are significant since they are often constituents of bioactive compounds. OBJECTIVE: The aims of this study were to synthesize pyrazole derivatives of medically relevant phenolic acids, confirm their structure, and evaluate their antioxidative and anti-LOX activities. METHODS: Phenolic pyrazole derivatives were obtained, starting from esters of medically relevant phenolic acids. The structures of all obtained compounds were determined by NMR and IR spectroscopy, and UV-Vis spectrophotometry. In addition, the single-crystal X-ray diffraction was used. Pyrazole derivatives were tested for their in vitro antioxidative (DPPH assay), and lipoxygenase (LOX) inhibitory activities. Radical quenching mechanism was estimated using DFT and thermodynamic approach, while molecular docking was used to estimate the binding mode within the enzyme. RESULTS: Pyrazole derivatives were obtained in high yields. The crystal structure of a new compound 3e was determined. Pyrazole derivative with catechol moiety 3d exhibited excellent radical scavenging activity, while compound 3b exhibited the best anti-LOX activity. Molecular docking study revealed that there is no direct interaction of any ligand with the active site of LOX-Ib, but pyrazoles 3a-e behave as inhibitors blocking the approach of linoleic acid to the active site. CONCLUSION: In this research, protocatechuic and vanillic acid pyrazole derivatives have been obtained for the first time. In vitro antioxidative assay suggests that pyrazole derivate of protocatechuic acid is a powerful radical scavenger, while anti-LOX assay indicates a pyrazole derivative with 4-hydroxyphenyl moiety.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Hidroxibenzoatos/química , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Antioxidantes/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Ligandos , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Pirazoles/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...