Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1405, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550286

RESUMEN

Species invasions are a leading threat to ecosystems globally, but our understanding of interactions among multiple invasive species and their outcomes on ecosystem properties is undeveloped despite their significance to conservation and management. Here we studied a large lake in Minnesota, USA, that experienced a simultaneous surge in invasive zebra mussel and spiny water flea populations. A long-term (2000-2018) dataset offered a rare opportunity to assess whole-ecosystem shifts following the co-invasion. Within two years, the native crustacean zooplankton community declined abruptly in density and productivity (-93% and -91%, respectively). Summer phytoplankton abundance and water clarity remained stable across the time series, an unexpected outcome given the high density of zebra mussels in the lake. Observational data and modeling indicate that removal of native herbivorous zooplankton by the predatory spiny water flea reduced zooplankton grazing pressure enough to compensate new grazing losses due to zebra mussels, resulting in a zero net effect on phytoplankton abundance and water clarity despite a wholesale shift in secondary production from the pelagic to the benthic food web. This study reveals the extent of direct and indirect effects of two aquatic invaders on food-web processes that cancel shifts in water clarity, a highly valued ecosystem service.


Asunto(s)
Dreissena , Animales , Ecosistema , Cadena Alimentaria , Lagos , Especies Introducidas , Fitoplancton
2.
J Paleolimnol ; 66(4): 389-405, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720408

RESUMEN

The spiny water flea (Bythotrephes cederströmii), a freshwater crustacean considered to be the world's best-studied invasive zooplankter, was first recorded in North America in the Laurentian Great Lakes during the 1980s. Its arrival is widely considered to be the result of ocean-going cargo ships that translocated contaminated ballast water from Eurasia to the Great Lakes during the 1970-1980s. The subsequent first discovery of the species in inland lakes is consistent with the hypothesis that propagules dispersed initially from established Great Lakes populations. Here we present evidence of exoskeletal remains, including mandibles, tail spines, and resting eggs, in 210Pb-dated lake sediment cores, which suggests that B. cederströmii was already resident in four inland North American lakes (two in Minnesota, USA; two in Ontario, Canada) by at least the early 1900s. Densities of exoskeletal remains were low and relatively steady from first appearance until about 1990, after which time they increased in all cores. The earliest evidence that we found was a mandible at 33-cm depth (pre-1650) in the sediments of Three Mile Lake, Ontario, Canada. These unexpected findings challenge the current paradigm of B. cederströmii invasion, renew uncertainty about the timing and sequence of its colonization of North American lakes, and potentially question our ability to detect invasive species with traditional sampling methods. We attempted to eliminate errors in the dated stratigraphies of the exoskeletal remains that might have been introduced either methodologically (e.g., core-wall smearing) or naturally (e.g., bioturbation). Nonetheless, given the very low numbers of subfossils encountered, questions remain about the possible artifactual nature of our observations and therefore we regard our results as 'preliminary findings' at this time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA