Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Biosci (Schol Ed) ; 16(1): 3, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38538345

RESUMEN

Age-related macular degeneration (AMD) is a multifactorial genetic disease, with at least 52 identifiable associated gene variants at 34 loci, including variants in complement factor H (CFH) and age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase-1 (ARMS2/HTRA1). Genetic factors account for up to 70% of disease variability. However, population-based genetic risk scores are generally more helpful for clinical trial design and stratification of risk groups than for individual patient counseling. There is some evidence of pharmacogenetic influences on various treatment modalities used in AMD patients, including Age-Related Eye Disease Study (AREDS) supplements, photodynamic therapy (PDT), and anti-vascular endothelial growth factor (anti-VEGF) agents. However, there is currently no convincing evidence that genetic information plays a role in routine clinical care.


Asunto(s)
Degeneración Macular , Proteínas , Humanos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Suplementos Dietéticos , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/uso terapéutico , Polimorfismo de Nucleótido Simple , Factores de Riesgo
2.
Cell Rep Med ; 5(2): 101430, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38382466

RESUMEN

Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.


Asunto(s)
Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto , Masculino , Femenino , Humanos , Predisposición Genética a la Enfermedad/genética , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/epidemiología , Polimorfismo de Nucleótido Simple , Proliferación Celular , Biología
3.
medRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38014167

RESUMEN

Objectives: To develop, validate and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHR)s. Methods : We developed and validated EHR-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in three independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet one of three criteria: 1) two or more dates with any DR ICD-9/10 code documented in the EHR, or 2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or 3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology exam. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology exam. Results: The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.97 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV=0.94; NPV=0.86) and lower in MGB (PPV=0.84; NPV=0.76). In comparison, use of DR definition as implemented in Phenome-wide association study (PheWAS) in VUMC, yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62,000 DR cases with genetic data including 14,549 African Americans and 6,209 Hispanics with DR. Conclusions/Discussion: We demonstrate the robustness of the algorithms at three separate health-care centers, with a minimum PPV of 0.84 and substantially improved NPV than existing high-throughput methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

4.
BMC Genomics ; 24(1): 75, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797672

RESUMEN

BACKGROUND: Exfoliation syndrome (XFS) is an age-related systemic disorder characterized by excessive production and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta-analysis of XFS in 123,457 multi-ethnic individuals from 24 countries identified seven loci with the strongest association signal in chr15q22-25 region near LOXL1. Expression analysis have so far correlated coding and a few non-coding variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS. RESULTS: Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues leveraging on results from the multi-ethnic and European ancestry GWAS were performed. To eliminate the possibility of false-positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the significant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty-eight genes in chr15q22-25 region that showed statistically significant associations, which were whittled down to ten genes after statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence of XFS comorbidity with inflammatory and connective tissue diseases. CONCLUSION: Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.


Asunto(s)
Síndrome de Exfoliación , Humanos , Síndrome de Exfoliación/genética , Síndrome de Exfoliación/complicaciones , Síndrome de Exfoliación/metabolismo , Aminoácido Oxidorreductasas/genética , ARN Mensajero , Mutación Missense , Expresión Génica , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ADN/genética , Antígenos B7/genética
5.
Am J Ophthalmol ; 235: 154-162, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34587493

RESUMEN

PURPOSE: To determine if plasma levels of six arginine-related and citrulline-related metabolites (arginine, citrulline, asymmetric dimethylarginine [ADMA], ornithine, proline, and argininosuccinate) differ between patients with type 2 diabetes and diabetic retinopathy (DR) and type 2 diabetic controls or between patients with proliferative DR (PDR) and non-proliferative DR (NPDR). DESIGN: Cross-sectional study. METHODS: Adults with type 2 diabetes were recruited from the Vanderbilt Eye Institute. Exclusion criteria included non-diabetic retinal disease. Plasma metabolite levels were quantified in 159 diabetic controls and 156 DR patients (92 NPDR, 64 PDR) using isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Metabolite levels were compared using Wilcoxon Rank Sum test and logistic regressions adjusting for age, sex, hemoglobin A1c, diabetes duration, statin use, and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker use. A secondary analysis that included creatinine in the regression model was performed for the subset of patients with available creatinine values (135 diabetic controls, 100 DR patients [58 NPDR, 42 PDR]). RESULTS: Multivariable logistic regression analyses determined that arginine (OR = 1.20, [1.06-1.38], P = .0067) and citrulline (OR = 1.53, [1.20-1.98], P = .0025) were significantly elevated in DR patients compared to diabetic controls. While ADMA differed between NPDR and PDR patients in the primary analysis (OR = 1.56, [1.15-2.16], P = .0051), it was not significantly different when adjusting for creatinine (OR = 1.30, [0.90-1.91], P = .15). CONCLUSIONS: Plasma arginine and citrulline were significantly elevated in type 2 diabetic patients with DR compared to diabetic controls. None of the tested metabolites significantly differed between NPDR and PDR patients in the adjusted analysis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Adulto , Arginina , Cromatografía Liquida , Citrulina , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/complicaciones , Humanos , Espectrometría de Masas en Tándem
6.
Cells ; 10(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34831363

RESUMEN

To characterize metabolites and metabolic pathways altered in intermediate and neovascular age-related macular degeneration (IAMD and NVAMD), high resolution untargeted metabolomics was performed via liquid chromatography-mass spectrometry on plasma samples obtained from 91 IAMD patients, 100 NVAMD patients, and 195 controls. Plasma metabolite levels were compared between: AMD patients and controls, IAMD patients and controls, and NVAMD and IAMD patients. Partial least-squares discriminant analysis and linear regression were used to identify discriminatory metabolites. Pathway analysis was performed to determine metabolic pathways altered in AMD. Among the comparisons, we identified 435 unique discriminatory metabolic features. Using computational methods and tandem mass spectrometry, we identified 11 metabolic features whose molecular identities had been previously verified and confirmed the molecular identities of three additional discriminatory features. Included among the discriminatory metabolites were acylcarnitines, phospholipids, amino acids, and steroid metabolites. Pathway analysis revealed that lipid, amino acid, and vitamin metabolism pathways were altered in NVAMD, IAMD, or AMD in general, including the carnitine shuttle pathway which was significantly altered in all comparisons. Finally, few discriminatory features were identified between IAMD patients and controls, suggesting that plasma metabolic profiles of IAMD patients are more similar to controls than to NVAMD patients.


Asunto(s)
Degeneración Macular/sangre , Degeneración Macular/metabolismo , Metabolómica , Neovascularización Patológica/sangre , Neovascularización Patológica/metabolismo , Anciano , Carnitina/análogos & derivados , Carnitina/sangre , Estudios de Casos y Controles , Análisis Discriminante , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Modelos Lineales , Lípidos/sangre , Masculino , Redes y Vías Metabólicas , Metaboloma , Persona de Mediana Edad
7.
Biomolecules ; 11(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922434

RESUMEN

We previously demonstrated that the bile acid taurocholic acid (TCA) inhibits features of age-related macular degeneration (AMD) in vitro. The purpose of this study was to determine if the glycine-conjugated bile acids glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and glycoursodeoxycholic acid (GUDCA) can protect retinal pigment epithelial (RPE) cells against oxidative damage and inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in choroidal endothelial cells (CECs). Paraquat was used to induce oxidative stress and disrupt tight junctions in HRPEpiC primary human RPE cells. Tight junctions were assessed via transepithelial electrical resistance and ZO-1 immunofluorescence. GCA and GUDCA protected RPE tight junctions against oxidative damage at concentrations of 100-500 µM, and GDCA protected tight junctions at 10-500 µM. Angiogenesis was induced with VEGF in RF/6A macaque CECs and evaluated with cell proliferation, cell migration, and tube formation assays. GCA inhibited VEGF-induced CEC migration at 50-500 µM and tube formation at 10-500 µM. GUDCA inhibited VEGF-induced CEC migration at 100-500 µM and tube formation at 50-500 µM. GDCA had no effect on VEGF-induced angiogenesis. None of the three bile acids significantly inhibited VEGF-induced CEC proliferation. These results suggest glycine-conjugated bile acids may be protective against both atrophic and neovascular AMD.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Neovascularización Patológica/prevención & control , Epitelio Pigmentado de la Retina/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Coroides/metabolismo , Células Endoteliales/metabolismo , Glicina/metabolismo , Ácido Glicocólico/farmacología , Ácido Glicodesoxicólico/farmacología , Humanos , Macaca mulatta , Neovascularización Patológica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Uniones Estrechas/metabolismo , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/metabolismo
8.
Exp Eye Res ; 193: 107974, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067977

RESUMEN

Previous metabolomics studies from our lab found altered plasma levels of bile acids in patients with age-related macular degeneration (AMD) compared to controls. In this study, we investigated the ability of the bile acid taurocholic acid (TCA) to inhibit features of AMD modeled in vitro. Paraquat was used to induce oxidative stress in HRPEpiC primary retinal pigment epithelial (RPE) cells. Cells were treated with 300 µM paraquat alone or with TCA (10, 50, 100, 200, or 500 µM). RPE tight junction integrity was assessed via ZO-1 immunofluorescence and transepithelial electrical resistance (TEER) measurements. RF/6A macaque choroidal endothelial cells were treated with 100 ng/mL vascular endothelial growth factor (VEGF) to induce angiogenesis. The effect of TCA on VEGF-induced angiogenesis was evaluated with cell proliferation, cell migration, and tube formation assays. Addition of TCA at 100 (P = 8.6 × 10-4), 200 (P = 0.0035), and 500 (P = 2.1 × 10-4) µM resulted in significant preservation of TEER in paraquat treated cells. In RF/6A cells, TCA did not significantly affect VEGF-induced cell proliferation. VEGF-induced migration of RF/6A cells was significantly inhibited at TCA concentrations of 100 (P = 0.010), 200 (P = 0.023) and 500 (P = 0.0049) µM. VEGF-induced tube formation was significantly inhibited when treated with 200 (P = 0.014) and 500 (P = 7.1 × 10-4) µM TCA. In vitro, TCA promoted RPE cell integrity and diminished VEGF-induced choroidal endothelial cell migration and tube formation. This suggests that TCA may have protective effects against both degenerative and neovascular AMD.


Asunto(s)
Coroides/patología , Epitelio Pigmentado de la Retina/patología , Ácido Taurocólico/farmacología , Degeneración Macular Húmeda/tratamiento farmacológico , Movimiento Celular , Proliferación Celular , Células Cultivadas , Coroides/efectos de los fármacos , Humanos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Degeneración Macular Húmeda/patología
9.
Invest Ophthalmol Vis Sci ; 60(8): 3119-3126, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323682

RESUMEN

Purpose: To determine plasma metabolite and metabolic pathway differences between patients with type 2 diabetes with diabetic retinopathy (DR) and without retinopathy (diabetic controls), and between patients with proliferative DR (PDR) and nonproliferative DR (NPDR). Methods: Using high-resolution mass spectrometry with liquid chromatography, untargeted metabolomics was performed on plasma samples from 83 DR patients and 90 diabetic controls. Discriminatory metabolic features were identified through partial least squares discriminant analysis, and linear regression was used to adjust for age, sex, diabetes duration, and hemoglobin A1c. Pathway analysis was performed using Mummichog 2.0. Results: In the adjusted analysis, 126 metabolic features differed significantly between DR patients and diabetic controls. Pathway analysis revealed alterations in the metabolism of amino acids, leukotrienes, niacin, pyrimidine, and purine. Arginine, citrulline, glutamic γ-semialdehyde, and dehydroxycarnitine were key contributors to these pathway differences. A total of 151 features distinguished PDR patients from NPDR patients, and pathway analysis revealed alterations in the ß-oxidation of saturated fatty acids, fatty acid metabolism, and vitamin D3 metabolism. Carnitine was a major contributor to the pathway differences. Conclusions: This study demonstrates that arginine and citrulline-related pathways are dysregulated in DR, and fatty acid metabolism is altered in PDR patients compared with NPDR patients.


Asunto(s)
Arginina/sangre , Carnitina/sangre , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/sangre , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Casos y Controles , Cromatografía Liquida , Diabetes Mellitus Tipo 2/sangre , Retinopatía Diabética/etiología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Agudeza Visual
11.
Invest Ophthalmol Vis Sci ; 59(12): 4978-4985, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30326066

RESUMEN

Purpose: To identify metabolites and metabolic pathways altered in neovascular age-related macular degeneration (NVAMD). Methods: We performed metabolomics analysis using high-resolution C18 liquid chromatography-mass spectrometry on plasma samples from 100 NVAMD patients and 192 controls. Data for mass/charge ratio ranging from 85 to 850 were captured, and metabolic features were extracted using xMSanalyzer. Nested feature selection was used to identify metabolites that discriminated between NVAMD patients and controls. Pathway analysis was performed with Mummichog 2.0. Hierarchical clustering was used to examine the relationship between the discriminating metabolites and NVAMD patients and controls. Results: Of the 10,917 metabolic features analyzed, a set of 159 was identified that distinguished NVAMD patients from controls (area under the curve of 0.83). Of these features, 39 were annotated with confidence and included multiple carnitine metabolites. Pathway analysis revealed that the carnitine shuttle pathway was significantly altered in NVAMD patients (P = 0.0001). Tandem mass spectrometry confirmed the molecular identity of five carnitine shuttle pathway acylcarnitine intermediates that were increased in NVAMD patients. Hierarchical cluster analysis revealed that 51% of the NVAMD patients had similar metabolic profiles, whereas the remaining 49% displayed greater variability in their metabolic profiles. Conclusions: Multiple long-chain acylcarnitines that are part of the carnitine shuttle pathway were significantly increased in NVAMD patients compared to controls, suggesting that fatty acid metabolism may be involved in NVAMD pathophysiology. Cluster analysis suggested that clinically indistinguishable NVAMD patients can be separated into distinct subgroups based on metabolic profiles.


Asunto(s)
Carnitina/metabolismo , Neovascularización Coroidal/metabolismo , Degeneración Macular Húmeda/metabolismo , Anciano , Carnitina/análogos & derivados , Cromatografía Liquida , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Metabolómica , Espectrometría de Masas en Tándem
12.
Invest Ophthalmol Vis Sci ; 58(14): 6481-6488, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288266

RESUMEN

Purpose: We previously demonstrated an association between European mitochondrial haplogroups and proliferative diabetic retinopathy (PDR). The purpose of this study was to determine how the relationship between these haplogroups and both diabetes duration and hyperglycemia, two major risk factors for diabetic retinopathy (DR), affect PDR prevalence. Methods: Our population consisted of patients with type 2 diabetes with (n = 377) and without (n = 480) DR. A Kruskal-Wallis test was used to compare diabetes duration and hemoglobin A1c (HbA1c) among mitochondrial haplogroups. Logistic regressions were performed to investigate diabetes duration and HbA1c as risk factors for PDR in the context of European mitochondrial haplogroups. Results: Neither diabetes duration nor HbA1c differed among mitochondrial haplogroups. Among DR patients from haplogroup H, longer diabetes duration and increasing HbA1c were significant risk factors for PDR (P = 0.0001 and P = 0.011, respectively). Neither diabetes duration nor HbA1c was a significant risk factor for PDR in DR patients from haplogroup UK. Conclusions: European mitochondrial haplogroups modify the effects of diabetes duration and HbA1c on PDR risk in patients with type 2 diabetes. In our patient population, longer diabetes duration and higher HbA1c increased PDR risk in patients from haplogroup H, but did not affect PDR risk in patients from haplogroup UK. This relationship has not been previously demonstrated and may explain, in part, why some patients with nonproliferative DR develop PDR and others do not, despite similar diabetes duration and glycemic control.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/genética , Hemoglobina Glucada/metabolismo , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Población Blanca/etnología , Anciano , Glucemia/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etnología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/etnología , Femenino , Haplotipos , Humanos , Masculino , Factores de Riesgo , Estados Unidos/epidemiología
13.
Invest Ophthalmol Vis Sci ; 58(2): 1346-1351, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28245487

RESUMEN

Purpose: We previously reported European mitochondrial haplogroup H to be a risk factor for and haplogroup UK to be protective against proliferative diabetic retinopathy (PDR) among Caucasian patients with diabetic retinopathy (DR). The purpose of this study was to determine whether these haplogroups are also associated with the risk of having DR among Caucasian patients with diabetes. Methods: Deidentified medical records for 637 Caucasian patients with diabetes (223 with DR) were obtained from BioVU, Vanderbilt University's electronic, deidentified DNA databank. An additional 197 Caucasian patients with diabetes (98 with DR) were enrolled from the Vanderbilt Eye Institute (VEI). We tested for an association between European mitochondrial haplogroups and DR status. Results: The percentage of diabetes patients with DR did not differ across the haplogroups (P = 0.32). The percentage of patients with nonproliferative DR (NPDR; P = 0.0084) and with PDR (P = 0.027) significantly differed across the haplogroups. In logistic regressions adjusting for sex, age, diabetes type, duration of diabetes, and hemoglobin A1c, neither haplogroup H nor haplogroup UK had a significant effect on DR compared with diabetic controls. Haplogroup UK was a significant risk factor (OR = 1.72 [1.13-2.59], P = 0.010) for NPDR compared with diabetic controls in the unadjusted analysis, but not in the adjusted analysis (OR = 1.29 [0.79-2.10], P = 0.20). Conclusions: Mitochondrial haplogroups H and UK were associated with severity, but not presence, of DR. These data argue that the effect of these haplogroups is related to ischemia and neovascularization, the defining features of PDR.


Asunto(s)
Retinopatía Diabética/genética , Haplotipos , Mitocondrias/genética , Anciano , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/sangre , Femenino , Hemoglobina Glucada/análisis , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Índice de Severidad de la Enfermedad , Reino Unido/epidemiología , Población Blanca
14.
Curr Pharm Des ; 23(4): 547-550, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27928964

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss and is primarily treated with nutritional supplementation as well as with anti-vascular endothelial growth factor (VEGF) agents for certain patients with neovascular disease. AMD is a complex disease with both genetic and environmental risk factors. In addition, treatment outcomes from nutritional supplementation and anti-VEGF agents vary considerably. Therefore, it is reasonable to suspect that there may be pharmacogenetic influences on these treatments. Many series have reported individual associations with variants in complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and other loci. However, at this time there are no validated associations. With respect to AMD, pharmacogenetics remains an intriguing area of research but is not helpful for routine clinical management.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Suplementos Dietéticos , Degeneración Macular/tratamiento farmacológico , Farmacogenética , Factores de Edad , Humanos , Degeneración Macular/genética , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Invest Ophthalmol Vis Sci ; 57(14): 6107-6115, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27832277

RESUMEN

PURPOSE: Progression rate of age-related macular degeneration (AMD) varies substantially, yet its association with genetic variation has not been widely examined. METHODS: We tested whether progression rate from intermediate AMD to geographic atrophy (GA) or choroidal neovascularization (CNV) was correlated with genotype at seven single nucleotide polymorphisms (SNPs) in the four genes most strongly associated with risk of advanced AMD. Cox proportional hazards survival models examined the association between progression time and SNP genotype while adjusting for age and sex and accounting for variable follow-up time, right censored data, and repeated measures (left and right eyes). RESULTS: Progression rate varied with the number of risk alleles at the CFH:rs10737680 but not the CFH:rs1061170 (Y402H) SNP; individuals with two risk alleles progressed faster than those with one allele (hazard ratio [HR] = 1.61, 95% confidence interval [CI] = 1.08-2.40, P < 0.02, n = 547 eyes), although this was not significant after Bonferroni correction. This signal was likely driven by an association at the correlated protective variant, CFH:rs6677604, which tags the CFHR1-3 deletion; individuals with at least one protective allele progressed more slowly. Considering GA and CNV separately showed that the effect of CFH:rs10737680 was stronger for progression to CNV. CONCLUSIONS: Results support previous findings that AMD progression rate is influenced by CFH, and suggest that variants within CFH may have different effects on risk versus progression. However, since CFH:rs10737680 was not significant after Bonferroni correction and explained only a relatively small portion of variation in progression rate beyond that explained by age, we suggest that additional factors contribute to progression.


Asunto(s)
Factor H de Complemento/genética , ADN/genética , Predisposición Genética a la Enfermedad , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Alelos , Factor H de Complemento/metabolismo , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo
16.
Mol Vis ; 22: 1062-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625572

RESUMEN

PURPOSE: Demographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes. METHODS: A genetic risk score was calculated in a case-control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex. RESULTS: No variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex. Protective effects trending toward significance were detected at two loci identified in single-variant analyses: an intronic variant in FBLN7 (the gene encoding fibulin 7) and at three variants near pyridoxal (pyridoxine, vitamin B6) kinase (PDXK). Aggregate rare-variant analyses suggested evidence for association at ASRGL1, a gene previously linked to photoreceptor cell death, and at BSDC1. In known AMD loci we also identified 29 novel or rare damaging missense or stop/splice variants in our sample of cases and controls. CONCLUSIONS: Identified variants and genes may highlight regions important in the pathogenesis of AMD and are key targets for replication.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Anciano , Femenino , Frecuencia de los Genes , Técnicas de Genotipaje , Humanos , Masculino , Fenotipo , Factores de Riesgo , Secuenciación del Exoma
17.
Clin Ophthalmol ; 10: 1229-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445455

RESUMEN

Age-related macular degeneration is a complex disease, with both genetic and environmental risk factors interacting in unknown ways. Currently, 52 gene variants within 34 loci have been significantly associated with age-related macular degeneration. Two well-studied major genes are complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2). There exist several commercially available tests that are proposed to stratify patients into high-risk and low-risk groups, as well as predict response to nutritional supplementation. However, at present, the bulk of the available peer-reviewed evidence suggests that genetic testing is more useful as a research tool than for clinical management of patients.

18.
Semin Ophthalmol ; 31(4): 432-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27116323

RESUMEN

The elderly population in the United States (age 65 and older) is growing rapidly, estimated by the U.S. Census Department to reach 83.7 million by 2050.(1) Visual impairment increases with age among all racial and ethnic groups.(2) In the elderly, the most common culprits for vision loss are cataract, glaucoma, and age-related macular degeneration (AMD).(2) In the developed world, vision loss from cataract has been dramatically reduced by increased access to cataract surgery. However, AMD and glaucoma lead to irreversible vision loss without early diagnosis and intervention. In the U.S., cases of AMD are expected to double by 2050, reaching 17.8 million among patients age 50 or older.(3) Similarly, cases of glaucoma are expected to reach 5.5 million by 2050, an increase of over 90% from 2014.(3) The visually impaired elderly face disparities in access to eye care, and subsequent general medical and psychosocial complications.


Asunto(s)
Envejecimiento , Oftalmopatías/epidemiología , Estado de Salud , Disparidades en Atención de Salud/estadística & datos numéricos , Trastornos de la Visión/epidemiología , Anciano , Anciano de 80 o más Años , Accesibilidad a los Servicios de Salud , Humanos , Personas con Daño Visual/estadística & datos numéricos
20.
Clin Ophthalmol ; 9: 2175-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648684

RESUMEN

Clinical risk factors for diabetic retinopathy (DR), such as duration of disease and degree of glucose control, do not adequately predict disease progression in individual patients, suggesting the presence of a genetic component. Multiple smaller studies have investigated genotype-phenotype correlations in genes encoding vascular endothelial growth factor, aldose reductase, the receptor for advanced glycation end products, and many others. In general, reported results have been conflicting, due to factors including small sample sizes, variations in study design, differences in clinical end points, and underlying genetic differences between study groups. At this time, there is no confirmed association with any risk allele reported. As we continue to collect data from additional studies, the role of genetics in DR may become more apparent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...