Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Aliment Pharmacol Ther ; 59(10): 1183-1195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516814

RESUMEN

BACKGROUND: Alpha-1 antitrypsin liver disease (AATLD) occurs in a subset of patients with alpha-1 antitrypsin deficiency. Risk factors for disease progression and specific pathophysiologic features are not well known and validated non-invasive assessments for disease severity are lacking. Currently, there are no approved treatments for AATLD. AIMS: To outline existing understanding of AATLD and to identify knowledge gaps critical to improving clinical trial design and development of new treatments. METHODS: This report was developed following a multi-stakeholder forum organised by the Alpha-1 Antitrypsin Deficiency Related Liver Disease Expert Panel in which experts presented an overview of the available literature on this topic. RESULTS: AATLD results from a 'gain of toxic function' and primarily manifests in those with the homozygous Pi*ZZ genotype. Accumulation of misfolded 'Z' AAT protein in liver cells triggers intracellular hepatocyte injury which may ultimately lead to hepatic fibrosis. Male gender, age over 50 years, persistently elevated liver tests, concomitant hepatitis B or C virus infection, and metabolic syndrome, including obesity and type 2 diabetes mellitus, are known risk factors for adult AATLD. While the gold standard for assessing AATLD disease activity is liver histology, less invasive measures with low intra- and inter-observer variability are needed. Measurement of liver stiffness shows promise; validated thresholds for staging AATLD are in development. Such advances will help patients by enabling risk stratification and personalised surveillance, along with streamlining the development process for novel therapies. CONCLUSIONS: This inaugural forum generated a list of recommendations to address unmet needs in the field of AATLD.


Asunto(s)
Biomarcadores , Desarrollo de Medicamentos , Hepatopatías , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/complicaciones , Hepatopatías/etiología , alfa 1-Antitripsina , Factores de Riesgo , Progresión de la Enfermedad
2.
Thorax ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418195

RESUMEN

INTRODUCTION: Altered complement component 3 (C3) activation in patients with alpha-1 antitrypsin (AAT) deficiency (AATD) has been reported. To understand the potential impact on course of inflammation, the aim of this study was to investigate whether C3d, a cleavage-product of C3, triggers interleukin (IL)-1ß secretion via activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. The objective was to explore the effect of AAT augmentation therapy in patients with AATD on the C3d/complement receptor 3 (CR3) signalling axis of monocytes and on circulating pro-inflammatory markers. METHODS: Inflammatory mediators were detected in blood from patients with AATD (n=28) and patients with AATD receiving augmentation therapy (n=19). Inflammasome activation and IL-1ß secretion were measured in monocytes of patients with AATD, and following C3d stimulation in the presence or absence of CR3 or NLRP3 inhibitors. RESULTS: C3d acting via CR3 induces NLRP3 and pro-IL-1ß production, and through induction of endoplasmic reticulum (ER) stress and calcium flux, triggers caspase-1 activation and IL-1ß secretion. Treatment of individuals with AATD with AAT therapy results in decreased plasma levels of C3d (3.0±1.2 µg/mL vs 1.3±0.5 µg/mL respectively, p<0.0001) and IL-1ß (115.4±30 pg/mL vs 73.3±20 pg/mL, respectively, p<0.0001), with a 2.0-fold decrease in monocyte NLRP3 protein expression (p=0.0303), despite continued ER stress activation. DISCUSSION: These results provide strong insight into the mechanism of complement-driven inflammation associated with AATD. Although the described variance in C3d and NLRP3 activation decreased post AAT augmentation therapy, results demonstrate persistent C3d and monocyte ER stress, with implications for new therapeutics and clinical practice.

3.
Hepatol Commun ; 8(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285890

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS: Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS: We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS: In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.


Asunto(s)
Sirtuina 3 , Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Animales , Ratones , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/metabolismo , Autofagia/genética , Ratones Transgénicos , Polímeros , Sirtuina 3/genética , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
4.
Respir Res ; 24(1): 309, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082274

RESUMEN

Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 µM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 µM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa-Defensinas , Humanos , Monocitos/metabolismo , alfa-Defensinas/metabolismo , Macrófagos/metabolismo , Deficiencia de alfa 1-Antitripsina/metabolismo , Macrófagos Alveolares/metabolismo , Factor de Transcripción STAT3/metabolismo
6.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37727673

RESUMEN

Background: Alpha-1 antitrypsin deficiency (AATD) is an under-recognised genetic cause of chronic obstructive lung disease, and many fewer cases than estimated have been identified. Can a reported respiratory and hepatic disease history from a large AATD testing database be used to stratify a person's risk of severe AATD? Methods: We analysed data extracted from the AATD National Detection Program. Demographics and medical history were evaluated to predict AATD PI*ZZ genotype. Logistic regression and integer programming models identified predictors and obtained risk scores. These were internally validated on a subset of the data. Results: Out of 301 343 subjects, 1529 (0.5%) had PI*ZZ genotype. Predictors of severe AATD were asthma, bronchitis, emphysema, allergies, bronchiectasis, family history of AATD, cirrhosis, hepatitis and history of abnormal liver function tests. The derived model establishes a subject's risk of severe AATD, and scores ≥0 had an estimated risk of 0.41%, sensitivity 84.62% and specificity 24.32%. A model simulating guideline recommendations had an estimated risk of 0.51% with a sensitivity of 37.98% and specificity 46.60%. By recommending screening for scores ≥0, we estimate that more subjects would be screened (75.7% versus 53.4%) and detected (84.6% versus 58.2%) compared to a guideline-simulated model. Conclusion: This medical history risk model is a useful predictive tool to detect subjects at greater risk of having severe AATD and improves sensitivity of detection. Scores <0 are at lower risk and may need not be screened; testing is recommended for scores ≥0 and consistent with current guidelines.

8.
Am J Med ; 136(10): 1011-1017, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451388

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency is an under-recognized genetic cause of chronic lung and liver disease; it remains unclear what the testing frequency and disparities are for alpha-1 antitrypsin deficiency. METHODS: This is a retrospective cohort study of people with newly diagnosed chronic obstructive pulmonary disease and liver disease identified at the University of Florida between January 1, 2012 and December 31, 2021. We performed incidence and prevalence analysis for alpha-1 antitrypsin (AAT) testing and point-biserial correlation analysis for tobacco use and AAT testing. We evaluated characteristics with AAT testing using adjusted multivariable logistic regression. RESULTS: Among 75,810 subjects with newly diagnosed chronic obstructive pulmonary disease and liver disease between 2012 and 2021, 4248 (5.6%) were tested for AAT deficiency. All subjects had an AAT level performed, while 1654 (39%) had phenotype testing. Annual incidence of testing increased for subjects with newly diagnosed chronic obstructive pulmonary disease or liver disease from 2.8% and 5.4%, respectively, in 2012 to 4.1% and 11.3%, respectively, in 2021. Adjusted multivariable regression analysis showed factors favoring AAT testing were White race, and concomitant chronic obstructive pulmonary disease and liver disease. Increasing age, non-White race, current tobacco use, and being a male with chronic obstructive pulmonary disease had lower odds of AAT testing. CONCLUSION: Although slowly improving, testing for AAT deficiency continues to have a low uptake in the clinical setting despite guidelines recommending broader testing. Individuals of White race and those with concomitant chronic obstructive pulmonary disease and liver disease are more likely to be tested, while older subjects, individuals of non-White race, current tobacco use, and men with chronic obstructive pulmonary disease are less favored to be tested.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Masculino , Humanos , Estudios Retrospectivos , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Fenotipo , Modelos Logísticos
9.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37313399

RESUMEN

Background: Animal models using intratracheal instillation show that elastase, unopposed by α1-antitrypsin (AAT), causes alveolar damage and haemorrhage associated with emphysematous changes. The aim of the present study was to characterise any relationship between alveolar haemorrhage and human AAT deficiency (AATD) using bronchoalveolar lavage (BAL) and lung explant samples from AATD subjects. Methods: BAL samples (17 patients, 15 controls) were evaluated for free haem (iron protoporphyrin IX) and total iron concentrations. Alveolar macrophage activation patterns were assessed using RNA sequencing and validated in vitro using haem-stimulated, monocyte-derived macrophages. Lung explants (seven patients, four controls) were assessed for iron sequestration protein expression patterns using Prussian blue stain and ferritin immunohistochemistry, as well as ferritin iron imaging and elemental analysis by transmission electron microscopy. Tissue oxidative damage was assessed using 8-hydroxy-2'-deoxyguanosine immunohistochemistry. Results: BAL collected from AATD patients showed significantly elevated free haem and total iron concentrations. Alveolar and interstitial macrophages in AATD explants showed elevated iron and ferritin accumulation in large lysosomes packed by iron oxide cores with degraded ferritin protein cages. BAL macrophage RNA sequencing showed innate pro-inflammatory activation, replicated in vitro by haemin exposure, which also triggered reactive oxygen species generation. AATD explants showed massive oxidative DNA damage in both lung epithelial cells and macrophages. Conclusions: BAL and tissue markers of alveolar haemorrhage, together with molecular and cellular evidence of macrophage innate pro-inflammatory activation and oxidative damage, are consistent with free haem stimulation. Overall, this initial study provides evidence for a pathogenetic role of elastase-induced alveolar haemorrhage in AATD emphysema.

10.
Biomedicines ; 11(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36831059

RESUMEN

The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.

11.
Respir Res ; 24(1): 40, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732772

RESUMEN

BACKGROUND: Alpha-1-antitrypsin deficient (AATD) individuals are prone to develop early age of onset chronic obstructive pulmonary disease (COPD) more severe than non-genetic COPD. Here, we investigated the characteristics of lower respiratory tract of AATD individuals prior to the onset of clinically significant COPD. METHODS: Bronchoalveolar lavage was performed on 22 AATD with normal lung function and 14 healthy individuals. Cell counts and concentrations of proteases, alpha-1-antitrypsin and proinflammatory mediators were determined in the bronchoalveolar lavage fluid from study subjects. In order to determine the airway inflammation, we also analyzed immune cell components of the large airways from bronchial biopsies using immunohistochemistry in both study subjects. Finally, we made comparisons between airway inflammation and lung function rate of decline using four repeated lung function tests over one year in AATD individuals. RESULTS: AATD individuals with normal lung function had 3 folds higher neutrophil counts, 2 folds increase in the proteases levels, and 2-4 folds higher levels of IL-8, IL-6, IL-1ß, and leukotriene B4 in their epithelial lining fluid compared to controls. Neutrophil elastase levels showed a positive correlation with the levels of IL-8 and neutrophils in AATD epithelial lining fluid. AATD individuals also showed a negative correlation of baseline FEV1 with neutrophil count, neutrophil elastase, and cytokine levels in epithelial lining fluid (p < 0.05). In addition, we observed twofold increase in the number of lymphocytes, macrophages, neutrophils, and mast cells of AATD epithelial lining fluid as compared to controls. CONCLUSION: Mild inflammation is present in the lower respiratory tract and airways of AATD individuals despite having normal lung function. A declining trend was also noticed in the lung function of AATD individuals which was correlated with pro-inflammatory phenotype of their lower respiratory tract. This results suggest the presence of proinflammatory phenotype in AATD lungs. Therefore, early anti-inflammatory therapies may be a potential strategy to prevent progression of lung disease in AATD individuals.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/epidemiología , Deficiencia de alfa 1-Antitripsina/genética , Elastasa de Leucocito , Interleucina-8 , alfa 1-Antitripsina/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Pulmón , Inflamación/diagnóstico
12.
Chronic Obstr Pulm Dis ; 10(1): 7-21, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36367950

RESUMEN

The SERPINA1 gene encodes the serine protease inhibitor alpha-1 antitrypsin (AAT) and is located on chromosome 14q31-32.3 in a cluster of homologous genes likely formed by exon duplication. AAT has a variety of anti-inflammatory properties. Its clinical relevance is best illustrated by the genetic disease alpha-1 antitrypsin deficiency (AATD) which is associated with an increased risk for chronic obstructive pulmonary disease (COPD) and cirrhosis. While 2 single nucleotide polymorphisms (SNPs) , S and Z, are responsible for more than 95% of all individuals with AATD, there are a number of rare variants associated with deficiency and dysfunction, as well as those associated with normal levels and function. Our laboratory has identified a number of novel AAT alleles that we report in this manuscript. We screened more than 500,000 individuals for AATD alleles through our testing program over the past 20 years. The characterization of these alleles was accomplished by DNA sequencing, measurement of AAT plasma levels and isoelectric focusing at pH 4-5. We report 22 novel AAT alleles discovered through our screening programs, such as Zlittle rock and QOchillicothe, and review the current literature of known AAT genetic variants.

13.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G594-G608, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256438

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.


Asunto(s)
Hígado Graso , Deficiencia de alfa 1-Antitripsina , Masculino , Femenino , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Lipopolisacáridos , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Ratones Transgénicos , Modelos Animales de Enfermedad , Inflamación
14.
Respir Res ; 23(1): 232, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068572

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.


Asunto(s)
Fumar Cigarrillos , Vesículas Extracelulares , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Fumar Cigarrillos/efectos adversos , Citocinas/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Leucocitos Mononucleares/metabolismo , Activación de Macrófagos , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Nicotiana , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/genética
15.
PLoS One ; 17(9): e0274427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36084115

RESUMEN

BACKGROUND: Severe acute respiratory syndrome caused by a novel coronavirus 2 (SARS-CoV-2) has infected more than 18 million people worldwide. The activation of endothelial cells is a hallmark of signs of SARS-CoV-2 infection that includes altered integrity of vessel barrier and endothelial inflammation. OBJECTIVES: Pulmonary endothelial activation is suggested to be related to the profound neutrophil elastase (NE) activity, which is necessary for sterilization of phagocytosed bacterial pathogens. However, unopposed activity of NE increases alveolocapillary permeability and extracellular matrix degradation. The uncontrolled protease activity of NE during the inflammatory phase of lung diseases might be due to the resistance of exosome associated NE to inhibition by alpha-1 antitrypsin. METHOD: 31 subjects with a diagnosis of SARS-CoV2 infection were recruited in the disease group and samples from 30 voluntaries matched for age and sex were also collected for control. RESULTS: We measured the plasma levels of exosome-associated NE in SARS-CoV-2 patients which, were positively correlated with sign of endothelial damage in those patients as determined by plasma levels of LDH. Notably, we also found strong correlation with plasma levels of alpha-1 antitrypsin and exosome-associated NE in SARS-CoV-2 patients. Using macrovascular endothelial cells, we also observed that purified NE activity is inhibited by purified alpha-1 antitrypsin while, NE associated with exosomes are resistant to inhibition and show less sensitivity to alpha-1 antitrypsin inhibitory activity, in vitro. CONCLUSIONS: Our results point out the role of exosome-associated NE in exacerbation of endothelial injury in SARS-CoV-2 infection. We have demonstrated that exosome-associated NE could be served as a new potential therapeutic target of severe systemic manifestations of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Exosomas , Deficiencia de alfa 1-Antitripsina , Células Endoteliales/metabolismo , Exosomas/metabolismo , Humanos , Elastasa de Leucocito/metabolismo , ARN Viral , SARS-CoV-2 , alfa 1-Antitripsina/metabolismo
17.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35730566

RESUMEN

α-1 antitrypsin (AAT) is a serine protease inhibitor that plays a pivotal role in maintaining lung homeostasis. The most common AAT allele associated with AAT deficiency (AATD) is PiZ. Z-AAT accumulates in cells due to misfolding, causing severe AATD. The major function of AAT is to neutralize neutrophil elastase in the lung. It is generally accepted that loss of antiprotease function is a major cause of COPD in individuals with AATD. However, it is now being recognized that the toxic gain-of-function effect of Z-AAT in macrophage likely contributes to lung disease. In the present study, we determined that TLR7 signaling is activated in Z-MDMs, and the expression level of NLRP3, one of the targets of TLR7 signaling, is significantly higher in Z- compared with M-MDMs. We also determined that the level of endosomal Alu RNA is significantly higher in Z-compared with M-MDMs. Alu RNA is a known endogenous ligand that activates TLR7 signaling. Z-AAT likely induces the expression of Alu elements in MDMs and accelerates monocyte death, leading to the higher level of endosomal Alu RNA in Z-MDMs. Taken together,this study identifies a mechanism responsible for the toxic gain of function of Z-AAT macrophages.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Deficiencia de alfa 1-Antitripsina , Humanos , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN , Receptor Toll-Like 7/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética
18.
Hepatol Commun ; 6(9): 2354-2367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621045

RESUMEN

Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Deficiencia de alfa 1-Antitripsina , Animales , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Respuesta de Proteína Desplegada/genética , Deficiencia de alfa 1-Antitripsina/genética
20.
Chronic Obstr Pulm Dis ; 9(1): 26-33, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34784453

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is under-recognized, prompting the need for enhanced detection strategies. The primary aim of this study is to determine the feasibility of using the electronic medical record (EMR) and linked electronic patient messages (EPM) to encourage AATD testing by patients with chronic obstructive pulmonary disease (COPD). METHODS: Study participants were eligible, untested adult patients who were prescribed an inhaled medication which is exclusively Food and Drug Administration-approved for treating COPD. Eligible patients received a message with basic information about AATD and availability of free, home-based AATD testing. Through a collaboration with the Alpha-1 Foundation's Alpha-1 Coded Testing (ACT) study, patients referred to home-based testing through EPM were flagged. The effectiveness of the electronic message was evaluated by the proportion of patients who underwent testing, and the rate of detecting individuals with severe deficiency of AAT among those tested. RESULTS: A total of 12,369 patients on eligible inhalers were screened; 5430 patients met all criteria and received an EPM. During the study, 396 patients (7.3%) fully requested an ACT kit. Of these, 209 patients (52.8%) returned the test sample and received genotyping results; 65.5%, had a normal AAT genotype (PI*MM), 31.6% were heterozygotes for a deficient allele (PI*MS, PI*MZ and PI*M/Null rare), and 2.9% had severe deficiency of alpha-1 antitrypsin (PI*SZ, PI*ZZ, PI*S/Null rare). CONCLUSIONS: While the response rate and test return rate were low, the rate of detecting individuals with AATD using this detection strategy exceeds that of many prior strategies. As such, while requiring independent validation in other populations, this detection strategy holds promise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...