Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 24(2): 163-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955648

RESUMEN

Carotenoid pigments provide some of the most common exclusively biogenic markers on Earth, and these organic pigments may be present in extraterrestrial life. Raman spectroscopy can be used to identify carotenoids quickly and accurately through the inelastic scattering of laser light. In this study, we show that Raman spectra of organic matter found in hot spring bacterial assemblages exhibit "spectral overprinting" of the carotenoid spectrum by the carbon spectrum as the organic matter progressively breaks down. Here, we present how, with increasing thermal maturity, the relative intensity of the carotenoid spectrum increases, and as maturity increases a low-intensity carbon spectrum forms in the same region as the carotenoid spectrum. This carbon spectrum increases in intensity as the thermal maturity increases further, progressively obscuring the carotenoid spectrum until only the carbon spectrum can be observed. This means key carotenoid biogenic signatures in hot spring deposits may be hidden within carbon spectra. A detailed study of the transition from carotenoid to carbon, Raman spectra may help develop deconvolution processes that assist in positively identifying biogenic carbon over abiogenic carbon. Our results are relevant for the data analysis from the Raman spectroscopy instruments on the Perseverance (National Aeronautics and Space Administration [NASA]) and Rosalind Franklin (European Space Agency [ESA]) rovers.


Asunto(s)
Manantiales de Aguas Termales , Carotenoides/análisis , Carbono , Italia , Carbonatos , Espectrometría Raman
2.
Geobiology ; 16(5): 540-555, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885252

RESUMEN

Lacustrine carbonate chimneys are striking, metre-scale constructions. If these were bioinfluenced constructions, they could be priority targets in the search for early and extraterrestrial microbial life. However, there are questions over whether such chimneys are built on a geobiological framework or are solely abiotic geomorphological features produced by mixing of lake and spring waters. Here, we use correlative microscopy to show that microbes were living around Pleistocene Mono Lake carbonate chimneys during their growth. A plausible interpretation, in line with some recent works by others on other lacustrine carbonates, is that benthic cyanobacteria and their associated extracellular organic material (EOM) formed tubular biofilms around rising sublacustrine spring vent waters, binding calcium ions and trapping and binding detrital silicate sediment. Decay of these biofilms would locally have increased calcium and carbonate ion activity, inducing calcite precipitation on and around the biofilms. Early manganese carbonate mineralisation was directly associated with cell walls, potentially related to microbial activity though the precise mechanism remains to be elucidated. Much of the calcite crystal growth was likely abiotic, and no strong evidence for either authigenic silicate growth or a clay mineral precursor framework was observed. Nevertheless, it seems likely that the biofilms provided initial sites for calcite nucleation and encouraged the primary organised crystal growth. We suggest that the nano-, micro- and macroscale fabrics of these Pleistocene Mono Lake chimneys were affected by the presence of centimetre-thick tubular and vertically stacked calcifying microbial mats. Such carbonate chimneys represent a promising macroscale target in the exploration for ancient or extraterrestrial life.


Asunto(s)
Carbonatos/química , Sedimentos Geológicos/microbiología , Lagos/microbiología , Manganeso/química , Monitoreo del Ambiente , Microscopía Electroquímica de Rastreo , Microscopía Electrónica de Transmisión , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA