Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(20): e2307060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516744

RESUMEN

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.


Asunto(s)
Germanio , Técnicas Fotoacústicas , Fototerapia , Animales , Ratones , Técnicas Fotoacústicas/métodos , Germanio/química , Fototerapia/métodos , Modelos Animales de Enfermedad , Rayos Láser , Nanopartículas/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Materiales Biocompatibles/química , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Femenino
2.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475349

RESUMEN

Macromolecules and their complexes remain interesting topics in various fields, such as targeted drug delivery and tissue regeneration. The complex chemical structure of such substances can be studied with a combination of Raman spectroscopy and machine learning. The complex of whey protein isolate (WPI) and hyaluronic acid (HA) is beneficial in terms of drug delivery. It provides HA properties with the stability obtained from WPI. However, differences between WPI-HA and WPI solutions can be difficult to detect by Raman spectroscopy. Especially when the low HA (0.1, 0.25, 0.5% w/v) and the constant WPI (5% w/v) concentrations are used. Before applying the machine learning techniques, all the collected data were divided into training and test sets in a ratio of 3:1. The performances of two ensemble methods, random forest (RF) and gradient boosting (GB), were evaluated on the Raman data, depending on the type of problem (regression or classification). The impact of noise reduction using principal component analysis (PCA) on the performance of the two machine learning methods was assessed. This procedure allowed us to reduce the number of features while retaining 95% of the explained variance in the data. Another application of these machine learning methods was to identify the WPI Raman bands that changed the most with the addition of HA. Both the RF and GB could provide feature importance data that could be plotted in conjunction with the actual Raman spectra of the samples. The results show that the addition of HA to WPI led to changes mainly around 1003 cm-1 (correspond to ring breath of phenylalanine) and 1400 cm-1, as demonstrated by the regression and classification models. For selected Raman bands, where the feature importance was greater than 1%, a direct evaluation of the effect of the amount of HA on the Raman intensities was performed but was found not to be informative. Thus, applying the RF or GB estimators to the Raman data with feature importance evaluation could detect and highlight small differences in the spectra of substances that arose from changes in the chemical structure; using PCA to filter out noise in the Raman data could improve the performance of both the RF and GB. The demonstrated results will make it possible to analyze changes in chemical bonds during various processes, for example, conjugation, to study complex mixtures of substances, even with small additions of the components of interest.

4.
Cytometry A ; 103(11): 868-880, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455600

RESUMEN

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 µJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 µJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.


Asunto(s)
Melanoma , Células Neoplásicas Circulantes , Ratones , Animales , Citometría de Flujo/métodos , Células Neoplásicas Circulantes/patología , Rayos Láser , Melanoma/patología , Análisis Espectral
5.
Pharmaceutics ; 15(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678843

RESUMEN

The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers. The high efficiency of platelet loading makes them promising research objects for the development of personalized drug-delivery systems. We are developing a new approach to use platelets decorated with magnetic nanoparticles as a targeted drug-delivery system, with a focus on bloodstream delivery. Platelets are non-nuclear blood cells and are of great importance in the pathogenesis of blood-clotting disorders. In addition, platelets are able to attach to circulating tumor cells. In this article, we studied the effect of platelets labeled with BSA-modified magnetic nanoparticles on healthy and cancer cells. This opens up broad prospects for future research based on the delivery of specific active substances by this method.

6.
ACS Appl Bio Mater ; 5(6): 2976-2989, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35616387

RESUMEN

We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.


Asunto(s)
Portadores de Fármacos , Nanocompuestos , Animales , Cápsulas , Proteínas de Repetición de Anquirina Diseñadas , Sistemas de Liberación de Medicamentos/métodos , Molécula de Adhesión Celular Epitelial , Ratones , Polímeros , Distribución Tisular
7.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685030

RESUMEN

A new type of flat substrate has been used to visualize structures inside living cells by surface-enhanced Raman scattering (SERS) and to study biochemical processes within cells. The SERS substrate is formed by stabilized aggregates of gold nanostars on a glass microscope slide coated with a layer of poly (4-vinyl pyridine) polymer. This type of SERS substrate provides good cell adhesion and viability. Au nanostars' long tips can penetrate the cell membrane, allowing it to receive the SERS signal from biomolecules inside a living cell. The proposed nanostructured surfaces were tested to study, label-free, the distribution of various biomolecules in cell compartments.

8.
Biomed Opt Express ; 12(1): 380-394, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33659080

RESUMEN

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.

9.
Pharmaceutics ; 14(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35056938

RESUMEN

Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved. Here, we demonstrate the fabrication of polylactic acid (PLA) "smart" films with microchamber arrays. These microchambers contain ceftriaxone as a payload in concentrations ranging from 12 ± 1 µg/cm2 to 38 ± 8 µg/cm2, depending on the patterned film thickness formed by the different PLA concentrations in chloroform. In addition, the release profile of the antibiotic can be prolonged up to 72 h in saline. At the same time, on the surface of agar plates, the antibiotic release time increases up to 96 h, which has been confirmed by the growth suppression of the Staphylococcus aureus bacteria. The efficient loading and optimal release rate are obtained for patterned films formed by the 1.5 wt % PLA in chloroform. The films produced from 1.5 and 2 wt % PLA solutions (thickness-0.42 ± 0.12 and 0.68 ± 0.16 µm, respectively) show an accelerated ceftriaxone release upon the trigger of the therapeutic ultrasound, which impacted as an expansion of the bacterial growth inhibition zone around the samples. Combining prolonged drug elution with the on-demand release ability of large cargo amount opens up new approaches for personalized and custom-tunable antibacterial therapy.

10.
J Control Release ; 329: 175-190, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33276016

RESUMEN

Targeting drug delivery systems is crucial to reducing the side effects of therapy. However, many of them are lacking effectiveness for kidney targeting, due to systemic dispersion and accumulation in the lungs and liver after intravenous administration. Renal artery administration of carriers provides their effective local accumulation but may cause irreversible vessel blockage. Therefore, the combination of the correct administration procedure, suitable drug delivery system, selection of effective and safe dosage is the key to sparing local therapy. Here, we propose the 3-µm sized fluorescent capsules based on poly-L-arginine and dextran sulfate for targeting the kidney via a mice renal artery. Hemodynamic study of the target kidney in combination with the histological analysis reveals a safe dose of microcapsules (20 × 106), which has not lead to irreversible pathological changes in blood flow and kidney tissue, and provides retention of 20.5 ± 3% of the introduced capsules in the renal cortex glomeruli. Efficacy of fluorescent dye localization in the target kidney after intra-arterial administration is 9 times higher than in the opposite kidney and after intravenous injection. After 24 h microcapsules are not observed in the target kidney when the safe dose of carriers is being used but a high level of fluorescent signal persists for 48 h indicating that fluorescent cargo accumulation in tissues. Injection of non-safe microcapsule dose leads to carriers staying in glomeruli for at least 48 h which has consequences of blood flow not being restored and tissue damage being observed in histology.


Asunto(s)
Portadores de Fármacos , Arteria Renal , Animales , Cápsulas , Sistemas de Liberación de Medicamentos , Riñón , Ratones
11.
J Fluoresc ; 30(6): 1483-1489, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32870453

RESUMEN

Label-free characterization of cell subpopulations is a very promising biomedical approach. Nowadays, there are several label-free methods based on different physical properties such as size, density, stiffness, etc. allowing the characterization of biological objects. However, fluorescence properties are the most suitable feature for the label-free study of tissue and cells. Understanding the autofluorescence level peculiarities of normal and pathological / live and dead cells can become a helpful tool for cells' metabolic activity, viability evaluation, and diagnostics of a number of diseases. In this study, we applied a series of mouse cell lines (RAW 264.7 - macrophages, L929 - fibroblasts, C2C12 - myoblasts, and B16-F10 - melanoma) to compare cell autofluorescence of live and dead cells under 488 nm laser excitation and found the difference between their autofluorescence depending on a cell state and type.


Asunto(s)
Técnicas Citológicas , Fluorescencia , Animales , Línea Celular , Supervivencia Celular , Ratones
12.
Langmuir ; 36(20): 5546-5553, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357014

RESUMEN

Surface-enhanced Raman scattering (SERS) is widely used for in vitro and in vivo bioimaging applications. However, reproducible and controllable fabrication of SERS tags with high density of electromagnetic hot-spots is still challenging. We report an improved strategy for the synthesis of core/shell Raman tags with high density of hot-spots and high immobilization of reporter molecules. The strategy is based on simultaneous growth and functionalization of an Au shell around Au nanospheres coated with 4-nitrobenzenethiol (NBT). The amount of added 4-NBT is key factor to control the structure SERS response of the resulting particles. Specifically, we demonstrate the formation of gap-enhanced Raman tags (GERTs) with a smooth solid shell (sGERTs), petal-like GERTs (pGERTs), and mesoporous Au particles (mGERTs) filled with Raman molecules. In contrast to NBT molecules, similar thiols such as 1,4-benzenedithiol (BDT) and 2-naphtalenethiol (NT) do not support the formation of pGERTs and mGERTs. To explain this finding, we proposed a growth mechanism based on the unique chemical structure of NBT. The SERS response of optimized pGERTs is 50 times higher than that from usual sGERTs, which makes pGERTs suitable for single-particle spectroscopy. We demonstrate successful application of pGERTs for high-speed cell imaging using 10 ms accumulation time per pixel and a total imaging time of about 1 min. Because of the high SERS response and unique porous structure, these nanoparticles have great potential for bioimaging and other applications.

13.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230871

RESUMEN

Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.


Asunto(s)
Separación Celular/métodos , Aprendizaje Profundo , Diagnóstico por Imagen/métodos , Citometría de Flujo/métodos , Automatización , Circulación Sanguínea , Separación Celular/instrumentación , Rastreo Celular , Diagnóstico por Imagen/instrumentación , Pruebas Diagnósticas de Rutina , Citometría de Flujo/instrumentación , Colorantes Fluorescentes , Enfermedades Hematológicas/diagnóstico , Humanos , Magnetismo , Células Neoplásicas Circulantes/patología , Enfermedades Raras/diagnóstico , Coloración y Etiquetado/métodos
14.
ACS Biomater Sci Eng ; 6(1): 389-397, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463221

RESUMEN

Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 µm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.


Asunto(s)
Portadores de Fármacos , Administración Cutánea , Cápsulas , Polielectrolitos , Flujo Sanguíneo Regional
15.
Biomed Opt Express ; 10(9): 4775-4789, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31565524

RESUMEN

A new type of bimodal contrast agent was made that is based on the self-quenching of indocyanine green (ICG) encapsulated in a biocompatible and biodegradable polymer shell. The increasing of a local ICG concentration that is necessary for the obtaining of self-quenching effect was achieved by freezing-induced loading and layer-by-layer assembly. As a result, an efficient photoacoustic(optoacoustic)/fluorescent contrast agent based on composite indocyanine green/polymer particles was successfully prepared and was characterized by fluorescence and photoacoustic(optoacoustic) tomography in vitro. This type of contrast agent holds good promise for clinical application owing to its high efficiency and biosafety.

16.
Sci Rep ; 9(1): 12439, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455790

RESUMEN

Photoswitchable fluorescent proteins (PFPs) that can change fluorescence color upon excitation have revolutionized many applications of light such as tracking protein movement, super-resolution imaging, identification of circulating cells, and optical data storage. Nevertheless, the relatively weak fluorescence of PFPs limits their applications in biomedical imaging due to strong tissue autofluorecence background. Conversely, plasmonic nanolasers, also called spasers, have demonstrated potential to generate super-bright stimulated emissions even inside single cells. Nevertheless, the development of photoswitchable spasers that can shift their stimulated emission color in response to light is challenging. Here, we introduce the novel concept of spasers using a PFP layer as the active medium surrounding a plasmonic core. The proof of principle was demonstrated by synthesizing a multilayer nanostructure on the surface of a spherical gold core, with a non-absorbing thin polymer shell and the PFP Dendra2 dispersed in the matrix of a biodegradable polymer. We have demonstrated photoswitching of spontaneous and stimulated emission in these spasers below and above the spasing threshold, respectively, at different spectral ranges. The plasmonic core of the spasers serves also as a photothermal (and potentially photoacoustic) contrast agent, allowing for photothermal imaging of the spasers. These results suggest that multimodal photoswitchable spasers could extend the traditional applications of spasers and PFPs in laser spectroscopy, multicolor cytometry, and theranostics with the potential to track, identify, and kill abnormal cells in circulation.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Ingeniería de Proteínas
17.
J Biophotonics ; 12(4): e201800265, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30511464

RESUMEN

Progress in understanding the cell biology and diseases depends on advanced imaging and labeling techniques. Here, we address this demand by exploring novel multilayered nanocomposites (MNCs) with plasmonic nanoparticles and absorbing dyes in thin nonabsorbing shells as supercontrast multimodal photoacoustic (PA) and fluorescent agents in the near-infrared range. The proof of concept was performed with gold nanorods (GNRs) and indocyanine green (ICG) dispersed in a matrix of biodegradable polymers. We demonstrated synergetic PA effects in MNCs with the gold-ICG interface that could not be achieved with ICG and GNRs alone. We also observed ultrasharp PA and emission peaks that could be associated with nonlinear PA and spaser effects, respectively. Low-toxicity multimodal MNCs with unique plasmonic, thermal and acoustic properties have the potential to make a breakthrough in PA flow cytometry and near-infrared spasers in vivo by using the synergetic interaction of plasmonic modes with a nearby absorbing medium.


Asunto(s)
Colorantes Fluorescentes/química , Nanocompuestos/química , Técnicas Fotoacústicas , Animales , Oro/química , Verde de Indocianina/química , Ratones , Nanotubos/química
18.
Sci Rep ; 8(1): 17763, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30531926

RESUMEN

We demonstrate a novel approach to the controlled loading of inorganic nanoparticles and proteins into submicron- and micron-sized porous particles. The approach is based on freezing/thawing cycles, which lead to high loading densities. The process was tested for the inclusion of Au, magnetite nanoparticles, and bovine serum albumin in biocompatible vaterite carriers of micron and submicron sizes. The amounts of loaded nanoparticles or substances were adjusted by the number of freezing/thawing cycles. Our method afforded at least a three times higher loading of magnetite nanoparticles and a four times higher loading of protein for micron vaterite particles, in comparison with conventional methods such as adsorption and coprecipitation. The capsules loaded with magnetite nanoparticles by the freezing-induced loading method moved faster in a magnetic field gradient than did the capsules loaded by adsorption or coprecipitation. Our approach allows the preparation of multicomponent nanocomposite materials with designed properties such as remote control (e.g. via the application of an electromagnetic or acoustic field) and cargo unloading. Such materials could be used as multimodal contrast agents, drug delivery systems, and sensors.

19.
Soft Matter ; 14(44): 9012-9019, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30378616

RESUMEN

Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.

20.
J Biophotonics ; 11(11): e201800058, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29900686

RESUMEN

Enzymatic destruction of adipose tissue has been achieved by encapsulation of lipase into the polymeric microcapsules. Adipose tissue destruction was delayed while lipase is encapsulated comparing with the direct lipase action as demonstrated by optical microscopy and optical coherence tomography in in vitro studies. Raman spectroscopy confirms that triglycerides in fat tissue were cleaved into free fatty acids, glycerol, and possible di- and monoglyceride residues. The results underpin the concept of local and controlled treatment of tissues via encapsulation. Effect of lipase encapsulation into the polymeric microcapsules on adipose tissue destruction compared to free lipase application.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Espectrometría Raman , Tomografía de Coherencia Óptica , Tejido Adiposo/diagnóstico por imagen , Cápsulas , Proteínas Fúngicas/química , Humanos , Lipasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...