Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomaterials ; 308: 122562, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583365

RESUMEN

Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.


Asunto(s)
Vesículas Extracelulares , Terapia Genética , Degeneración del Disco Intervertebral , Animales , Vesículas Extracelulares/metabolismo , Terapia Genética/métodos , Femenino , Masculino , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Disco Intervertebral/patología , Ratas Sprague-Dawley , Dolor de Espalda/terapia , Dolor de Espalda/genética , Dolor de la Región Lumbar/terapia
2.
Mol Ther ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38549375

RESUMEN

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.

4.
Vet Comp Oncol ; 21(3): 492-502, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37254642

RESUMEN

High-grade glioma is an aggressive cancer that occurs naturally in pet dogs. Canine high-grade glioma (cHGG) is treated with radiation, chemotherapy or surgery, but has no curative treatment. Within the past eight years, there have been advances in our imaging and histopathology standards as well as genetic charactereization of cHGG. However, there are only three cHGG cell lines publicly available, all of which were derived from astrocytoma and established using methods involving expansion of tumour cells in vitro on plastic dishes. In order to provide more clinically relevant cell lines for studying cHGG in vitro, the goal of this study was to establish cHGG patient-derived lines, whereby cancer cells are expanded in vivo by injecting cells into immunocompromized laboratory mice. The cells are then harvested from mice and used for in vitro studies. This method is the standard in the human field and has been shown to minimize the acquisition of genetic alterations and gene expression changes from the original tumour. Through a multi-institutional collaboration, we describe our methods for establishing two novel cHGG patient-derived lines, Boo-HA and Mo-HO, from a high-grade astrocytoma and a high-grade oligodendroglioma, respectively. We compare our novel lines to G06-A, J3T-Bg, and SDT-3G (traditional cHGG cell lines) in terms of proliferation and sensitivity to radiation. We also perform whole genome sequencing and identify an NF1 truncating mutation in Mo-HO. We report the characterization and availability of these novel patient-derived lines for use by the veterinary community.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Enfermedades de los Perros , Glioma , Humanos , Perros , Animales , Ratones , Glioma/genética , Glioma/veterinaria , Glioma/metabolismo , Astrocitoma/genética , Astrocitoma/veterinaria , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/veterinaria , Neoplasias Encefálicas/patología
5.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559029

RESUMEN

Aromatase Inhibitors (AIs) block estrogen production and improve survival in patients with hormone-receptor-positive breast cancer. However, half of patients develop aromatase-inhibitor-induced arthralgia (AIIA), which is characterized by inflammation of the joints and the surrounding musculoskeletal tissue. To create a platform for future interventional strategies, our objective was to characterize a novel animal model of AIIA. Female BALB/C-Tg(NFκB-RE-luc)-Xen mice, which have a firefly luciferase NFκB reporter gene, were oophorectomized and treated with an AI (letrozole). Bioluminescent imaging showed significantly enhanced NFκB activation with AI treatment in the hind limbs. Moreover, an analysis of the knee joints and legs via MRI showed enhanced signal detection in the joint space and the surrounding tissue. Surprisingly, the responses observed with AI treatment were independent of oophorectomy, indicating that inflammation is not mediated by physiological estrogen levels. Histopathological and pro-inflammatory cytokine analyses further demonstrated the same trend, as tenosynovitis and musculoskeletal infiltrates were detected in all mice receiving AI, and serum cytokines were significantly upregulated. Human PBMCs treated with letrozole/estrogen combinations did not demonstrate an AI-specific gene expression pattern, suggesting AIIA-mediated pathogenesis through other cell types. Collectively, these data identify an AI-induced stimulation of disease pathology and suggest that AIIA pathogenesis may not be mediated by estrogen deficiency, as previously hypothesized.

6.
Front Mol Neurosci ; 15: 788301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185466

RESUMEN

Aortic aneurism open repair surgery can cause spinal cord (SC) injury with 5-15% of patients developing paraparesis or paraplegia. Using a mouse model of transient aortic cross-clamping (ACC), we have previously found that the expression of proinflammatory microRNA miR-155 increases in motoneurons (MNs) and endothelial cells (ECs) of ischemic SCs, and that global miR-155 deletion decreases the percentage of paraplegia by 37.4% at 48-h post-ACC. Here, we investigated the cell-specific contribution of miR-155 in choline acetyltransferase-positive (ChAT+) neurons (that include all MNs of the SC) and ECs to SC injury after ACC. Mice lacking miR-155 in ChAT+ neurons (MN-miR-155-KO mice) developed 24.6% less paraplegia than control mice at 48-h post-ACC. In contrast, mice lacking miR-155 in ECs (ECs-miR-155-KO mice) experienced the same percentage of paraplegia as control mice, despite presenting smaller central cord edema. Unexpectedly, mice overexpressing miR-155 in ChAT+ neurons were less likely than control mice to develop early paraplegia during the first day post-ACC, however they reached the same percentage of paraplegia at 48-h. In addition, all mice overexpressing miR-155 in ECs (ECs-miR-155-KI mice) were paraplegic at 48-h post-ACC. Altogether, our results suggest that miR-155 activity in ChAT+ neurons protects the SC against ischemic injury during the first day post-ACC before becoming deleterious during the second day, which indicates that early and late paraplegias arise from different molecular malfunctions. These results point to the need to develop specific protective therapeutics aimed at inhibiting both the early and late deleterious events after open repair surgery of aortic aneurisms.

7.
Front Neurol ; 12: 740298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917012

RESUMEN

Introduction: Spontaneously hypertensive stroke-prone rats (SHRSP) are used to model clinically relevant aspects of human cerebral small vessel disease (CSVD). To decipher and understand the underlying disease dynamics, assessment of the temporal progression of CSVD histopathological and neuroimaging correlates is essential. Materials and Methods: Eighty age-matched male SHRSP and control Wistar Kyoto rats (WKY) were randomly divided into four groups that were aged until 7, 16, 24 and 32 weeks. Sensorimotor testing was performed weekly. Brain MRI was acquired at each study time point followed by histological analyses of the brain. Results: Compared to WKY controls, the SHRSP showed significantly higher prevalence of small subcortical hyperintensities on T2w imaging that progressed in size and frequency with aging. Volumetric analysis revealed smaller intracranial and white matter volumes on brain MRI in SHRSP compared to age-matched WKY. Diffusion tensor imaging (DTI) showed significantly higher mean diffusivity in the corpus callosum and external capsule in WKY compared to SHRSP. The SHRSP displayed signs of motor restlessness compared to WKY represented by hyperactivity in sensorimotor testing at the beginning of the experiment which decreased with age. Distinct pathological hallmarks of CSVD, such as enlarged perivascular spaces, microbleeds/red blood cell extravasation, hemosiderin deposits, and lipohyalinosis/vascular wall thickening progressively accumulated with age in SHRSP. Conclusions: Four stages of CSVD severity in SHRSP are described at the study time points. In addition, we find that quantitative analyses of brain MRI enable identification of in vivo markers of CSVD that can serve as endpoints for interventional testing in therapeutic studies.

8.
Exp Neurol ; 346: 113853, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464653

RESUMEN

Experience-dependent white matter plasticity offers new potential for rehabilitation-induced recovery after neurotrauma. This first-in-human translational experiment combined myelin water imaging in humans and genetic fate-mapping of oligodendrocyte lineage cells in mice to investigate whether downhill locomotor rehabilitation that emphasizes eccentric muscle actions promotes white matter plasticity and recovery in chronic, incomplete spinal cord injury (SCI). In humans, of 20 individuals with SCI that enrolled, four passed the imaging screen and had myelin water imaging before and after a 12-week (3 times/week) downhill locomotor treadmill training program (SCI + DH). One individual was excluded for imaging artifacts. Uninjured control participants (n = 7) had two myelin water imaging sessions within the same day. Changes in myelin water fraction (MWF), a histopathologically-validated myelin biomarker, were analyzed in a priori motor learning and non-motor learning brain regions and the cervical spinal cord using statistical approaches appropriate for small sample sizes. PDGFRα-CreERT2:mT/mG mice, that express green fluorescent protein on oligodendrocyte precursor cells and subsequent newly-differentiated oligodendrocytes upon tamoxifen-induced recombination, were either naive (n = 6) or received a moderate (75 kilodyne), contusive SCI at T9 and were randomized to downhill training (n = 6) or unexercised groups (n = 6). We initiated recombination 29 days post-injury, seven days prior to downhill training. Mice underwent two weeks of daily downhill training on the same 10% decline grade used in humans. Between-group comparison of functional (motor and sensory) and histological (oligodendrogenesis, oligodendroglial/axon interaction, paranodal structure) outcomes occurred post-training. In humans with SCI, downhill training increased MWF in brain motor learning regions (postcentral, precuneus) and mixed motor and sensory tracts of the ventral cervical spinal cord compared to control participants (P < 0.05). In mice with thoracic SCI, downhill training induced oligodendrogenesis in cervical dorsal and lateral white matter, increased axon-oligodendroglial interactions, and normalized paranodal structure in dorsal column sensory tracts (P < 0.05). Downhill training improved sensorimotor recovery in mice by normalizing hip and knee motor control and reducing hyperalgesia, both of which were associated with new oligodendrocytes in the cervical dorsal columns (P < 0.05). Our findings indicate that eccentric-focused, downhill rehabilitation promotes white matter plasticity and improved function in chronic SCI, likely via oligodendrogenesis in nervous system regions activated by the training paradigm. Together, these data reveal an exciting role for eccentric training in white matter plasticity and sensorimotor recovery after SCI.


Asunto(s)
Rehabilitación Neurológica/métodos , Plasticidad Neuronal/fisiología , Desempeño Psicomotor/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Sustancia Blanca/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Enfermedad Crónica , Prueba de Esfuerzo/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
9.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586683

RESUMEN

The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.


Asunto(s)
Tejido Adiposo/enzimología , Alcohol Deshidrogenasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Obesidad/enzimología , Pericardio/enzimología , Tejido Adiposo/patología , Alcohol Deshidrogenasa/deficiencia , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metabolómica , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Obesidad/genética , Obesidad/patología , Pericardio/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Retinaldehído/metabolismo , Transducción de Señal/genética
10.
PLoS One ; 15(10): e0237520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002030

RESUMEN

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Asunto(s)
Quimiocina CXCL1/sangre , Gota/terapia , Inflamación/prevención & control , Condicionamiento Físico Animal , Receptor Toll-Like 2/sangre , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ejercicio Físico/fisiología , Femenino , Gota/sangre , Gota/patología , Humanos , Inflamación/sangre , Inflamación/patología , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neutrófilos/metabolismo , Neutrófilos/patología , Dolor/prevención & control , Pronóstico , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
11.
Lupus ; 29(13): 1790-1799, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33045900

RESUMEN

OBJECTIVE: Since enhanced cardiac magnetic resonance imaging (cMRI) signals have been associated with lupus disease activity in humans prior to renal failure and novel, cardiac-focused therapeutic strategies could be investigated with an associated animal model, autoimmune myocarditis was characterized in murine lupus nephritis (NZM2410). METHODS: Weekly blood urea nitrogen (BUN) levels and weights were recorded. Cardiac function was assessed by echocardiogram. Myocardial edema was measured with quantitative T2 cMRI mapping. Endpoint serum and cardiac tissue were collected for histopathological analysis and cytokine measurements. RESULTS: Despite showing no signs of significant renal disease, mice displayed evidence of myocarditis and fibrosis histologically at 30-35 weeks. Moreover, T2 cMRI mapping displayed robust signals and analysis of sagittal heart sections showed significant myocardium thickening. Cytokine expression levels of IL-2, IL-10, TNF-α, CXCL1, and IL-6 were significantly enhanced in serum. Echocardiograms demonstrated significantly increased ventricular diameters and reduced ejection fractions, while immunohistochemical staining identified CD4+ and CD8+ T cells, and IL-17 in cardiac infiltrates. Human lupus cardiac tissue showed similar histopathology with enhanced infiltrates by H&E, fibrosis, and CD4+ detection. CONCLUSIONS: Histopathology, functional abnormalities, and enhanced cMRI signals indicative of myocarditis are detected in NZM2410 mice without glomerulonephritis, which supports the primary pathological role of autoimmune-mediated, cardiac-targeted inflammation in lupus.


Asunto(s)
Glomerulonefritis/patología , Nefritis Lúpica/patología , Miocarditis/patología , Miocardio/patología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Fibrosis , Interleucina-17/metabolismo , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Miocarditis/inmunología , Miocarditis/metabolismo
12.
J Vis Exp ; (160)2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568247

RESUMEN

Metastatic spread of cancer is an unfortunate consequence of disease progression, aggressive cancer subtypes, and/or late diagnosis. Brain metastases are particularly devastating, difficult to treat, and confer a poor prognosis. While the precise incidence of brain metastases in the United States remains hard to estimate, it is likely to increase as extracranial therapies continue to become more efficacious in treating cancer. Thus, it is necessary to identify and develop novel therapeutic approaches to treat metastasis at this site. To this end, intracranial injection of cancer cells has become a well-established method in which to model brain metastasis. Previously, the inability to directly measure tumor growth has been a technical hindrance to this model; however, increasing availability and quality of small animal imaging modalities, such as magnetic resonance imaging (MRI), are vastly improving the ability to monitor tumor growth over time and infer changes within the brain during the experimental period. Herein, intracranial injection of murine mammary tumor cells into immunocompetent mice followed by MRI is demonstrated. The presented injection approach utilizes isoflurane anesthesia and a stereotactic setup with a digitally controlled, automated drill and needle injection to enhance precision, and reduce technical error. MRI is measured over time using a 9.4 Tesla instrument in The Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource. Tumor volume measurements are demonstrated at each time point through use of ImageJ. Overall, this intracranial injection approach allows for precise injection, day-to-day monitoring, and accurate tumor volume measurements, which combined greatly enhance the utility of this model system to test novel hypotheses on the drivers of brain metastases.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Inyecciones , Imagen por Resonancia Magnética , Anestesia , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Técnicas Estereotáxicas , Carga Tumoral
13.
JACC Clin Electrophysiol ; 4(12): 1501-1515, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30573112

RESUMEN

OBJECTIVES: This study sought to improve atrial fibrillation (AF) driver identification by integrating clinical multielectrode mapping with driver fingerprints defined by high-resolution ex vivo 3-dimensional (3D) functional and structural imaging. BACKGROUND: Clinical multielectrode mapping of AF drivers suffers from variable contact, signal processing, and structural complexity within the 3D human atrial wall, raising questions on the validity of such drivers. METHODS: Sustained AF was mapped in coronary-perfused explanted human hearts (n = 11) with transmural near-infrared optical mapping (∼0.3 mm2 resolution). Simultaneously, custom FIRMap catheters (∼9 × 9 mm2 resolution) mapped endocardial and epicardial surfaces, which were analyzed by Focal Impulse and Rotor Mapping activation and Rotational Activity Profile (Abbott Labs, Chicago, Illinois). Functional maps were integrated with contrast-enhanced cardiac magnetic resonance imaging (∼0.1 mm3 resolution) analysis of 3D fibrosis architecture. RESULTS: During sustained AF, near-infrared optical mapping identified 1 to 2 intramural, spatially stable re-entrant AF drivers per heart. Driver targeted ablation affecting 2.2 ± 1.1% of the atrial surface terminated and prevented AF. Driver regions had significantly higher phase singularity density and dominant frequency than neighboring nondriver regions. Focal Impulse and Rotor Mapping had 80% sensitivity to near-infrared optical mapping-defined driver locations (16 of 20), and matched 14 of 20 driver visualizations: 10 of 14 re-entries seen with Rotational Activity Profile; and 4 of 6 breakthrough/focal patterns. Focal Impulse and Rotor Mapping detected 1.1 ± 0.9 false-positive rotational activity profiles per recording, but these regions had lower intramural contrast-enhanced cardiac magnetic resonance imaging fibrosis than did driver regions (14.9 ± 7.9% vs. 23.2 ± 10.5%; p < 0.005). CONCLUSIONS: The study revealed that both re-entrant and breakthrough/focal AF driver patterns visualized by surface-only clinical multielectrodes can represent projections of 3D intramural microanatomic re-entries. Integration of multielectrode mapping and 3D fibrosis analysis may enhance AF driver detection, thereby improving the efficacy of driver-targeted ablation.


Asunto(s)
Fibrilación Atrial , Técnicas de Imagen Cardíaca/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Corazón , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/fisiopatología , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador
14.
Ann Diagn Pathol ; 36: 12-20, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29966831

RESUMEN

Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.


Asunto(s)
Isquemia/metabolismo , Proteínas de Transporte de Membrana/genética , MicroARNs/genética , Traumatismos de la Médula Espinal/genética , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica/métodos , Isquemia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Simportadores , Proteínas Supresoras de Tumor/genética
15.
Neurobiol Aging ; 67: 128-136, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656012

RESUMEN

In older adults, the loss of muscle strength (dynapenia) and the loss of muscle mass (sarcopenia) are important contributors to the loss of physical function. We sought to investigate dynapenia, sarcopenia, and the loss of motor unit function in aging mice. C57BL/6J mice were analyzed with cross-sectional (males: 3 vs. 27 months; males and females: 8 vs. 12 vs. 20 months) and longitudinal studies (males: 10-25 months) using in vivo electrophysiological measures of motor unit connectivity (triceps surae compound muscle action potential and motor unit number estimation), in vivo measures of plantar flexion torque, magnetic resonance imaging of hind limb muscle volume, and grip strength. Compound muscle action potential amplitude, motor unit number estimation, and plantar flexion torque were decreased at 20 months. In contrast, grip strength was reduced at 24 months. Motor unit number estimates correlated with muscle torque and hind limb muscle volume. Our results demonstrate that the loss of motor unit connectivity is an early finding in aging male and female mice and that muscle size and contractility are both associated with motor unit number.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Potenciales de Acción , Envejecimiento/patología , Animales , Estudios Transversales , Fenómenos Electrofisiológicos , Femenino , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Tamaño de los Órganos
16.
Nano Res ; 11(10): 5596-5603, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31737222

RESUMEN

Nanoparticles have been widely explored for combined therapeutic and diagnostic applications. For example, lipid-based nanoparticles have been used to encapsulate multiple types of agents and achieve multi-functions. Herein, we enabled a co-delivery of mRNA molecules and superparamagnetic iron oxide nanoparticles (SPIONs) by using an amino-ester lipid-like nanomaterial. An orthogonal experimental design was used to identify the optimal formulation. The optimal formulation, MPA-Ab-8 LLNs, not only showed high encapsulation of both mRNA and SPIONs, but also increased the r 2 relaxivity of SPIONs by more than 1.5-fold in vitro. MPA-Ab-8 LLNs effectively delivered mRNA and SPIONs into cells, and consequently induced high protein expression as well as strong MRI contrast. Consistent herewith, we observed both mRNA-mediated protein expression and an evident negative contrast enhancement of MRI signal in mice. In conclusion, amino-ester nanomaterials demonstrate great potential as delivery vehicles for theranostic applications.

17.
J Am Heart Assoc ; 6(8)2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28862969

RESUMEN

BACKGROUND: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3-dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers. METHODS AND RESULTS: High-resolution panoramic epicardial optical mapping of the coronary-perfused explanted intact human atria (63-year-old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium. The whole atria (107×61×85 mm3) were then imaged with contrast-enhancement MRI (9.4 T, 180×180×360-µm3 resolution). The entire 3D human atria were analyzed for wall thickness (0.4-11.7 mm), myofiber orientations, and transmural fibrosis (36.9% subendocardium; 14.2% midwall; 3.4% subepicardium). The 3D computational analysis revealed that a specific combination of wall thickness and fibrosis ranges were primarily present in the optically defined AF driver regions versus nondriver tissue. Finally, a 3D human heart-specific atrial computer model was developed by integrating 3D structural and functional mapping data to test AF induction, maintenance, and ablation strategies. This 3D model reproduced the optically defined reentrant AF drivers, which were uninducible when fibrosis and myofiber anisotropy were removed from the model. CONCLUSIONS: Our novel 3D computational high-resolution framework may be used to quantitatively analyze structural substrates, such as wall thickness, myofiber orientation, and fibrosis, underlying localized AF drivers, and aid the development of new patient-specific treatments.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/diagnóstico por imagen , Remodelación Atrial , Mapeo Epicárdico , Atrios Cardíacos/diagnóstico por imagen , Frecuencia Cardíaca , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Modelación Específica para el Paciente , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Ablación por Catéter , Femenino , Fibrosis , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/cirugía , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Tiempo
18.
Eur Heart J Cardiovasc Imaging ; 18(8): 862-869, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087602

RESUMEN

AIMS: The adult human sinoatrial node (SAN) has a specialized fibrotic intramural structure (35-55% fibrotic tissue) that provides mechanical and electrical protection from the surrounding atria. We hypothesize that late gadolinium-enhanced cardiovascular magnetic resonance (LGE-CMR) can be applied to define the fibrotic human SAN structure in vivo. METHODS AND RESULTS: LGE-CMR atrial scans of healthy volunteers (n olu, 23-52 y.o.) using a 3 Tesla magnetic resonance imaging system with a spatial resolution of 1.0 mm3 or 0.625 × 0.625 × 1.25 mm3 were obtained and analysed. Percent fibrosis of total connective and cardiomyocyte tissue area in segmented atrial regions were measured based on signal intensity differences of fibrotic vs. non-fibrotic cardiomyocyte tissue. A distinct ellipsoidal fibrotic region (length: 23.6 ± 1.9 mm; width: 7.2 ± 0.9 mm; depth: 2.9 ± 0.4 mm) in all hearts was observed along the posterior junction of the crista terminalis and superior vena cava extending towards the interatrial septum, corresponding to the anatomical location of the human SAN. The SAN fibrotic region consisted of 41.9 ± 5.4% of LGE voxels above an average threshold of 2.7 SD (range 2-3 SD) from the non-fibrotic right atrial free wall tissue. Fibrosis quantification and SAN identification by in vivo LGE-CMR were validated in optically mapped explanted donor hearts ex vivo (n ivo, 19-65 y.o.) by contrast-enhanced CMR (9.4 Tesla; up to 90 µm3 resolution) correlated with serial histological sections of the SAN. CONCLUSION: This is the first study to visualize the 3D human SAN fibrotic structure in vivo using LGE-CMR. Identification of the 3D SAN location and its high fibrotic content by LGE-CMR may provide a new tool to avoid or target SAN structure during ablation.


Asunto(s)
Gadolinio , Imagen por Resonancia Cinemagnética/métodos , Intensificación de Imagen Radiográfica , Nodo Sinoatrial/diagnóstico por imagen , Adulto , Medios de Contraste , Femenino , Fibrosis/diagnóstico por imagen , Fibrosis/patología , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Nodo Sinoatrial/patología , Adulto Joven
19.
J Neurotrauma ; 34(6): 1149-1155, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27650169

RESUMEN

People who suffer a traumatic spinal cord injury (SCI) are at increased risk for developing dermatological complications. These conditions increase cost of care, incidence of rehospitalization, and the risk for developing other infections. The consequences of dermatological complications after SCI are likely exacerbated further by post-injury deficits in neural-immune signaling. Indeed, a functional immune system is essential for optimal host defense and tissue repair. Here, we tested the hypothesis that SCI at high spinal levels, which causes systemic immune suppression, would suppress cutaneous inflammation below the level of injury. C57BL/6 mice received an SCI (T3 spinal level) or sham injury; then one day later complete Freund's adjuvant (CFA) was injected subcutaneously below the injury level. Inflammation was quantified by injecting mice with V-Sense, a perfluorocarbon (PFC) tracer that selectively labels macrophages, followed by in vivo imaging. The total radiant efficiency, which is proportional to the number of macrophages, was measured over a 4-day period at the site of CFA injection. Fluorescent in vivo imaging revealed that throughout the analysis period, the macrophage reaction in SCI mice was reduced ∼50% compared with sham-injured mice. Radiant efficiency data were confirmed using magnetic resonance imaging (MRI), and together the data indicate that SCI significantly impairs subcutaneous inflammation. Future studies should determine whether enhancing local inflammation or boosting systemic immune function can improve the rate or efficiency of cutaneous wound healing in individuals with SCI. Doing so also could limit wound infections or secondary complications of impaired healing after SCI.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Enfermedades de la Piel/inmunología , Traumatismos de la Médula Espinal/inmunología , Cicatrización de Heridas/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Fluorocarburos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Enfermedades de la Piel/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico por imagen
20.
J Alzheimers Dis ; 51(2): 571-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26890765

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized clinically by cognitive decline and memory loss. The pathological features are amyloid-ß peptide (Aß) plaques and intracellular neurofibrillary tangles. Many studies have suggested that oxidative damage induced by reactive oxygen species (ROS) is an important mechanism for AD progression. Our recent study demonstrated that oxidative stress could further impair mitochondrial function. In the present study, we adopted a transgenic mouse model of AD (mAPP, overexpressing AßPP/Aß in neurons) and performed redox measurements using in vivo electron paramagnetic resonance (EPR) imaging with methoxycarbamyl-proxyl (MCP) as a redox-sensitive probe for studying oxidative stress in an early stage of pathology in a transgenic AD mouse model. Through assessing oxidative stress, mitochondrial function and cognitive behaviors of mAPP mice at the age of 8-9 months, we found that oxidative stress and mitochondrial dysfunction appeared in the early onset of AD. Increased ROS levels were associated with defects of mitochondrial and cognitive dysfunction. Notably, the in vivo EPR method offers a unique way of assessing tissue oxidative stress in living animals under noninvasive conditions, and thus holds a potential for early diagnosis and monitoring the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Adenosina Trifosfato/metabolismo , Edad de Inicio , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Memoria Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...