Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Theor Biol ; 581: 111738, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38278343

RESUMEN

We introduce a mathematical model based on mixture theory intended to describe the tumor-immune system interactions within the tumor microenvironment. The equations account for the geometry of the tumor expansion, and the displacement of the immune cells, driven by diffusion and chemotactic mechanisms. They also take into account the constraints in terms of nutrient and oxygen supply. The numerical investigations analyze the impact of the different modeling assumptions and parameters. Depending on the parameters, the model can reproduce elimination, equilibrium or escape phases and it identifies a critical role of oxygen/nutrient supply in shaping the tumor growth. In addition, antitumor immune cells are key factors in controlling tumor growth, maintaining an equilibrium while protumor cells favor escape and tumor expansion.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Sistema Inmunológico , Matemática , Oxígeno , Microambiente Tumoral
2.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047226

RESUMEN

To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Piel , Péptido Hidrolasas , Internalización del Virus
3.
Front Immunol ; 13: 903069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325333

RESUMEN

Macrophages from human and mouse skin share phenotypic and functional features, but remain to be characterized in pathological skin conditions. Skin-resident macrophages are known to derive from embryonic precursors or from adult hematopoiesis. In this report, we investigated the origins, phenotypes and functions of macrophage subsets in mouse and human skin and in cutaneous squamous cell carcinoma (cSCC) using the spectral flow cytometry technology that enables cell autofluorescence to be considered as a full-fledged parameter. Autofluorescence identifies macrophage subsets expressing the CD206 mannose receptor in human peri-tumoral skin and cSCC. In mouse, all AF+ macrophages express the CD206 marker, a subset of which also displaying the TIM-4 marker. While TIM-4-CD206+ AF+ macrophages can differentiate from bone-marrow monocytes and infiltrate skin and tumor, TIM-4 identifies exclusively a skin-resident AF+ macrophage subset that can derive from prenatal hematopoiesis which is absent in tumor core. In mouse and human, AF+ macrophages from perilesional skin and cSCC are highly phagocytic cells contrary to their AF- counterpart, thus identifying autofluorescence as a bona fide marker for phagocytosis. Our data bring to light autofluorescence as a functional marker characterizing subsets of phagocytic macrophages in skin and cSCC. Autofluorescence can thus be considered as an attractive marker of function of macrophage subsets in pathological context.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Adulto , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/patología , Neoplasias Cutáneas/patología , Fagocitosis , Macrófagos/patología , Monocitos
4.
Front Oncol ; 12: 878827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832538

RESUMEN

When it comes to improving cancer therapies, one challenge is to identify key biological parameters that prevent immune escape and maintain an equilibrium state characterized by a stable subclinical tumor mass, controlled by the immune cells. Based on a space and size structured partial differential equation model, we developed numerical methods that allow us to predict the shape of the equilibrium at low cost, without running simulations of the initial-boundary value problem. In turn, the computation of the equilibrium state allowed us to apply global sensitivity analysis methods that assess which and how parameters influence the residual tumor mass. This analysis reveals that the elimination rate of tumor cells by immune cells far exceeds the influence of the other parameters on the equilibrium size of the tumor. Moreover, combining parameters that sustain and strengthen the antitumor immune response also proves more efficient at maintaining the tumor in a long-lasting equilibrium state. Applied to the biological parameters that define each type of cancer, such numerical investigations can provide hints for the design and optimization of cancer treatments.

6.
Front Immunol ; 13: 847576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185935

RESUMEN

The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.


Asunto(s)
Lectinas Tipo C/metabolismo , Subfamilia B de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Humanos , Células Asesinas Naturales/metabolismo , Ligandos , Linfocitos T/metabolismo
7.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35039463

RESUMEN

BACKGROUND: Expression of killer cell lectin-like receptor B1 (KLRB1), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown. METHODS: We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies. RESULTS: Central and effector memory CD4+ T cells express CD161, but only CD4+CD161+ effector memory T cells (Tem) are associated with improved survival in OPSCC. Therapeutic vaccination activates and expands type 1 cytokine-producing CD4+CD161+ effector T cells. The expression of CD161 is dynamic and follows a pattern opposite of the checkpoint molecules PD1 and CD39. CD161 did not function as an immune checkpoint molecule as demonstrated using multiple experimental approaches using antibodies to block CD161 and gene editing to knockout CD161 expression. Single-cell transcriptomics revealed KLRB1 expression in many T cell clusters suggesting differences in their activation. Indeed, CD4+CD161+ effector cells specifically expressed the transcriptional transactivator SOX4, known to enhance T cell receptor (TCR) signaling via CD3ε. Consistent with this observation, CD4+CD161+ cells respond more vigorously to limiting amounts of cognate antigen in presence of interleukin (IL)-12 and IL-18 compared to their CD161- counterparts. The expression of CD161/KLRB1 and SOX4 was downregulated upon TCR stimulation and this effect was boosted by transforming growth factor (TGF)ß1. CONCLUSION: High levels of CD4+CD161+ Tem are associated with improved survival and our data show that CD161 is dynamically regulated by cell intrinsic and extrinsic factors. CD161 expressing CD4+ T cells rapidly respond to suboptimal antigen stimulation suggesting that CD161, similar to SOX4, is involved in the amplification of TCR signals in CD4+ T cells.


Asunto(s)
Papillomavirus Humano 16/patogenicidad , Subfamilia B de Receptores Similares a Lectina de Células NK/metabolismo , Infecciones por Papillomavirus/mortalidad , Linfocitos T CD4-Positivos , Femenino , Humanos , Masculino , Análisis de Supervivencia
8.
PLoS One ; 16(11): e0259291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34808661

RESUMEN

Switching from the healthy stage to the uncontrolled development of tumors relies on complicated mechanisms and the activation of antagonistic immune responses, that can ultimately favor the tumor growth. We introduce here a mathematical model intended to describe the interactions between the immune system and tumors. The model is based on partial differential equations, describing the displacement of immune cells subjected to both diffusion and chemotactic mechanisms, the strength of which is driven by the development of the tumors. The model takes into account the dual nature of the immune response, with the activation of both antitumor and protumor mechanisms. The competition between these antagonistic effects leads to either equilibrium or escape phases, which reproduces features of tumor development observed in experimental and clinical settings. Next, we consider on numerical grounds the efficacy of treatments: the numerical study brings out interesting hints on immunotherapy strategies, concerning the role of the administered dose, the role of the administration time and the interest in combining treatments acting on different aspects of the immune response. Such mathematical model can shed light on the conditions where the tumor can be maintained in a viable state and also provide useful hints for personalized, efficient, therapeutic strategies, boosting the antitumor immune response, and reducing the protumor actions.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Inmunoterapia , Neoplasias
9.
Front Immunol ; 12: 666233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936105

RESUMEN

The integrative analysis of tumor immune microenvironment (TiME) components, their interactions and their microanatomical distribution is mandatory to better understand tumor progression. Imaging Mass Cytometry (IMC) is a high dimensional tissue imaging system which allows the comprehensive and multiparametric in situ exploration of tumor microenvironments at a single cell level. We describe here the design of a 39-antibody IMC panel for the staining of formalin-fixed paraffin-embedded human tumor sections. We also provide an optimized staining procedure and details of the experimental workflow. This panel deciphers the nature of immune cells, their functions and their interactions with tumor cells and cancer-associated fibroblasts as well as with other TiME structural components known to be associated with tumor progression like nerve fibers and tumor extracellular matrix proteins. This panel represents a valuable innovative and powerful tool for fundamental and clinical studies that could be used for the identification of prognostic biomarkers and mechanisms of resistance to current immunotherapies.


Asunto(s)
Citometría de Imagen/métodos , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Flujo de Trabajo
10.
J Invest Dermatol ; 141(10): 2369-2379, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33831432

RESUMEN

NK cells and tissue-resident innate lymphoid cells (ILCs) are innate effectors found in the skin. To investigate their temporal dynamics and specific functions throughout the development of cutaneous squamous cell carcinoma (cSCC), we combined transcriptomic and immunophenotyping analyses in mouse and human cSCCs. We identified an infiltration of NK cells and ILC1s as well as the presence of a few ILC3s. Adoptive transfer of NK cells in NK cell‒ and ILC-deficient Nfil3-/- mice revealed a role for NK cells in early control of cSCC. During tumor progression, we identified a population skewing with the infiltration of atypical ILC1 secreting inflammatory cytokines but reduced levels of IFN-γ at the papilloma stage. NK cells and ILC1s were functionally impaired, with reduced cytotoxicity and IFN-γ secretion associated with the downregulation of activating receptors. They also showed a high degree of heterogeneity in mouse and human cSCCs with the expression of several markers of exhaustion, including TIGIT on NK cells and PD-1 and TIM-3 on ILC1s. Our data show an enrichment in inflammatory ILC1 at the precancerous stage together with impaired antitumor functions in NK cells and ILC1 that could contribute to the development of cSCC and thus suggest that future immunotherapies should take both ILC populations into account.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Células Asesinas Naturales/fisiología , Linfocitos/fisiología , Neoplasias Cutáneas/inmunología , Traslado Adoptivo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Ratones , Receptor 1 Gatillante de la Citotoxidad Natural/análisis , Estadificación de Neoplasias , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología
11.
Cancers (Basel) ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664318

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.

12.
J Invest Dermatol ; 140(9): 1723-1732, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32061658

RESUMEN

The ability of cancer cells to invade and disseminate can be affected by components of the surrounding microenvironment. To identify dermal components that regulate the growth of epidermal carcinomas, we studied the genetic disease called xeroderma pigmentosum that bears mutations in genes involved in the nucleotide excision repair of DNA. Patients with xeroderma pigmentosum are more prone to develop cutaneous tumors than the general population and their dermal fibroblasts display the features of dermal cancer-associated fibroblasts, which promote the invasion of keratinocytes. Here, we report that 3-dimensional dermal cultures of fibroblasts from healthy donors but not from patients with xeroderma pigmentosum complementation group C express CLEC2A, which is the ligand of the activating NK cell receptor NKp65. A similar loss of CLEC2A was observed in sporadic dermal cancer-associated fibroblasts and upon the culture of fibroblasts with cutaneous squamous cell carcinoma-conditioned medium. Using an innovative 3-dimensional organotypic skin culture model that contain NK cells in addition to fibroblasts and squamous cell carcinoma cells, we unveiled a key role of CLEC2A that orchestrates a crosstalk between fibroblasts and NK cells, thereby leading to the control of squamous cell carcinoma invasion. These findings indicate that CLEC2A-expressing dermal fibroblasts play a major role in immune surveillance of the skin.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Escamosas/inmunología , Lectinas Tipo C/deficiencia , Neoplasias Cutáneas/inmunología , Xerodermia Pigmentosa/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Fibroblastos Asociados al Cáncer/inmunología , Carcinoma de Células Escamosas/patología , Comunicación Celular/inmunología , Células Cultivadas , Niño , Preescolar , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Vigilancia Inmunológica , Lactante , Recién Nacido , Células Asesinas Naturales/inmunología , Masculino , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Cultivo Primario de Células , Receptores Similares a Lectina de Células NK/metabolismo , Piel/inmunología , Piel/patología , Neoplasias Cutáneas/patología , Microambiente Tumoral/inmunología , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/inmunología , Adulto Joven
13.
J Theor Biol ; 490: 110163, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31981572

RESUMEN

The recent success of immunotherapies for the treatment of cancer has highlighted the importance of the interactions between tumor and immune cells. Mathematical models of tumor growth are needed to faithfully reproduce and predict the spatiotemporal dynamics of tumor growth. We introduce a mathematical model intended to describe by means of a system of partial differential equations the early stages of the interactions between effector immune cells and tumor cells. The model is structured in size and space, and it takes into account the migration of the tumor antigen-specific cytotoxic effector cells towards the tumor micro-environment by a chemotactic mechanism. We investigate on numerical grounds the role of the key parameters of the model such as the division and growth rates of the tumor cells, and the conversion and death rates of the immune cells. Our main findings are two-fold. Firstly, the model exhibits a possible control of the tumor growth by the immune response; nevertheless, the control is not complete in the sense that the asymptotic equilibrium states keep residual tumors and activated immune cells. Secondly, space heterogeneities of the source of immune cells can significantly reduce the efficiency of the control dynamics, making patterns of remission-recurrence appear.


Asunto(s)
Antineoplásicos , Neoplasias , Carcinogénesis , Transformación Celular Neoplásica , Humanos , Inmunoterapia , Recurrencia Local de Neoplasia , Microambiente Tumoral
14.
Oncoimmunology ; 7(5): e1423184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721382

RESUMEN

Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161+ CD4+ and CD8+ T cells as compared to normal distant lung and peripheral blood. CD161+ CD4+ T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161+ CD4+ T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4+ T cells ideal candidates for efficient anti-tumor recall responses.

15.
Curr Protoc Immunol ; 118: 7.42.1-7.42.12, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762488

RESUMEN

This unit describes the monitoring and quantification of cellular cytotoxicity using a non-radioactive and real-time cytotoxic assay. The extent of target-cell lysis is monitored over time by imaging and quantifying live fluorescent target cells using a cell-imaging multimode reader. This assay is performed in a 96 well plate in optimized culture conditions at 37°C in the presence of 5% CO2 . The basic protocol describes natural killer cell-mediated cytotoxic assay that can be adapted to include antibodies blocking inhibitory NK receptors or triggering antibody-dependent cell-mediated cytotoxicity (ADCC). The assay is also suitable for antigen specific T-cell cytotoxic assays. Until now, the standard chromium 51 (51 Cr)-release assay has remained the sole sensitive assay but its major drawbacks include cost and hazard of handling radioactivity. The real-time cytotoxic assay is therefore an effective alternative providing a robust and sensitive assay that accurately monitors lysis of target cells over time. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Pruebas Inmunológicas de Citotoxicidad , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología , Bioensayo , Células Cultivadas , Radioisótopos de Cromo , Citotoxicidad Inmunológica , Humanos
16.
Front Immunol ; 8: 63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28203239

RESUMEN

Persistent B cell responses in mucosal tissues are crucial to control infection against sexually transmitted pathogens like human immunodeficiency virus 1 (HIV-1). The genital tract is a major site of infection by HIV. Sublingual (SL) immunization in mice was previously shown to generate HIV-specific B cell immunity that disseminates to the genital tract. We report here the immunogenicity in female cynomolgus macaques of a SL vaccine based on a modified gp41 polypeptide coupled to the cholera toxin B subunit designed to expose hidden epitopes and to improve mucosal retention. Combined SL/intramuscular (IM) immunization with such mucoadhesive gp41-based vaccine elicited mucosal HIV-specific IgG and IgA antibodies more efficiently than IM immunization alone. This strategy increased the number and duration of gp41-specific IgA secreting cells. Importantly, combined immunization improved the generation of functional antibodies 3 months after vaccination as detected in HIV-neutralizing assays. Therefore, SL immunization represents a promising vaccine strategy to block HIV-1 transmission.

17.
Immunology ; 150(4): 489-494, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28004383

RESUMEN

Reliable measurement of cellular cytotoxicity is essential for the characterization of immune responses and for the monitoring of antibody treatment efficacy. Until now, the standard 51 Cr-release assay has remained the sole sensitive assay that measures cellular cytotoxicity. Alternative non-radioactive assays have been developed but they do not provide accurate measurement of target cell cytotoxicity. The cost and hazard of handling radioactivity are strong incentives to find alternative solutions to 51 Cr. We took advantage of the recent development of cell-imaging multimode readers to develop a novel non-radioactive and real-time cytotoxic assay that demonstrates good reproducibility and sensitivity. The extent of target-cell cytotoxicity is monitored over time by imaging and quantifying live fluorescent target cells in 96-well plates. We have developed classical natural killer cell assays in the presence or absence of blocking antibodies and antibody-dependent cell-mediated cytotoxicity. We show that in these assays, cell killing occurs within the first 2 hr with half maximum killing reached after 30 min. This technology has numerous applications such as natural killer and T-cell cytotoxicity assays and can be extended to cell survival and apoptosis measurement assays.


Asunto(s)
Pruebas Inmunológicas de Citotoxicidad/métodos , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología , Separación Celular , Células Cultivadas , Radioisótopos de Cromo , Citotoxicidad Inmunológica , Citometría de Flujo , Colorantes Fluorescentes , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
PLoS One ; 10(12): e0143224, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26630176

RESUMEN

Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.


Asunto(s)
Antígenos Ly/metabolismo , Linfocitos T CD8-positivos/inmunología , Toxina del Cólera/inmunología , Inmunidad Innata/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Vacunación , Vacunas/inmunología , Vagina/inmunología , Animales , Linfocitos T CD8-positivos/citología , Recuento de Células , Células Dendríticas/inmunología , Femenino , Ligandos , Ratones , Ratones Endogámicos C57BL , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo
19.
Oncoimmunology ; 4(8): e1026503, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26405582

RESUMEN

Non-Hodgkin's lymphomas (NHLs) are malignant neoplasms which are clinically and biologically diverse. Their incidence is constantly increasing and despite treatment advances, there is a need for novel targeted therapies. Here, we identified Lectin-like transcript 1 (LLT1) as a biomarker of germinal center (GC)-derived B-cell NHLs. LLT1 identifies GC B cells in reactive tonsils and lymph nodes and its expression is maintained in B-cell NHLs which derive from GC, including Burkitt lymphoma (BL), follicular lymphoma (FL), and GC-derived diffuse large B-cell lymphoma (DLBCL). We further show that LLT1 expression by tumors dampens natural killer (NK) cell functions following interaction with its receptor CD161, uncovering a potential immune escape mechanism. Our results pinpoint LLT1 as a novel biomarker of GC-derived B-cell NHLs and as a candidate target for innovative immunotherapies.

20.
Cell Rep ; 10(12): 2043-54, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25801035

RESUMEN

Innate lymphoid cells (ILCs) are a family of effectors that originate from a common innate lymphoid cell progenitor. However, the transcriptional program that sets the identity of the ILC lineage remains elusive. Here, we show that NFIL3 is a critical regulator of the common helper-like innate lymphoid cell progenitor (CHILP). Cell-intrinsic Nfil3 ablation led to variably impaired development of fetal and adult ILC subsets. Conditional gene targeting demonstrated that NFIL3 exerted its function prior to ILC subset commitment. Accordingly, NFIL3 ablation resulted in loss of ID2(+) CHILP and PLZF(+) ILC progenitors. Nfil3 expression in lymphoid progenitors was under the control of the mesenchyme-derived hematopoietin IL-7, and NFIL3 exerted its function via direct Id2 regulation in the CHILP. Moreover, ectopic Id2 expression in Nfil3-null precursors rescued defective ILC lineage development in vivo. Our data establish NFIL3 as a key regulator of common helper-like ILC progenitors as they emerge during early lymphopoiesis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular/fisiología , Inmunidad Innata , Células Asesinas Naturales/citología , Linfocitos/citología , Células Progenitoras Linfoides/citología , Linfopoyesis/inmunología , Animales , Diferenciación Celular/genética , Linaje de la Célula/fisiología , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...