Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Niño , Adolescente , Cognición/fisiología , Desempeño Psicomotor/fisiología
2.
Sci Rep ; 13(1): 8438, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231030

RESUMEN

Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS. A randomized, sham-controlled, double-blind crossover study design was conducted within a clinical trial for the development of pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation session, participants performed 3 cognitive tasks to assess the response to the intervention: the Flanker Task, N-Back Task and Continuous Performance Test (CPT). We used data from 56 healthy children and adolescents to implement an unsupervised clustering approach that stratify participants based on their resting-state EEG spectral features before the tDCS intervention. We then applied a correlational analysis to characterize the clusters of EEG profiles in terms of participant's difference in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after a tDCS-sham or a tDCS-active session. Better behavioral performance following the active tDCS session compared to the sham tDCS session is considered a positive intervention response, whilst the reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 clusters. These results show that specific EEG-based digital phenotypes can be associated to particular responses. While one cluster presents neurotypical EEG activity, the remaining clusters present non-typical EEG characteristics, which seem to be associated with a positive response. Findings suggest that unsupervised machine learning can be successfully used to stratify and eventually predict responses of individuals to a tDCS treatment.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Niño , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados , Electroencefalografía/métodos , Corteza Prefrontal/fisiología , Tiempo de Reacción , Método Doble Ciego
3.
Front Psychiatry ; 14: 1245536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328520

RESUMEN

Background: Digital media-use disorders (DMUD) in adolescents are a rising phenomenon associated with psychological distress, comorbid mental disorders, and high burden on affected families. Since the ICD-11 introduced criteria for gaming disorder, these can now be transferred to describe additional DMUD associated with social media platforms and streaming services. Most evidence for effective treatments comes from cognitive-behavioral therapy (CBT). However, interventions based on theoretical models for adolescents and their parents are widely missing, leading to a significant clinical gap. Methods: Res@t digital (Resource-Strengthening Training for Adolescents with Problematic Digital-Media Use and their Parents) is the app-based translation of the first model-based digital intervention for adolescents with DMUD and their parents based on CBT. It comprises separate but content-related modules for adolescents (Res@t-A) and parents (Res@t-P), applying multimodal techniques. The effectiveness of Res@t will be evaluated within a multicenter cluster-randomized controlled evaluator-blinded pre-post follow-up trial with the waitlist control group (CG). In addition to the Res@t program in the intervention group, both groups will receive treatment as usual within primary child and adolescent psychiatric/psychotherapeutic healthcare. The primary outcome addresses DMUD symptom reduction after 10 weeks. Secondary outcomes are related to a reduction in psychological and family-related problems and an increase in parental self-efficacy. All outcomes will be assessed using standardized self-report measures. A total of 1,334 participating adolescent-parent dyads from a large clinical network throughout Germany are planned to be included in the primary analyses based on an intention-to-treat approach, applying linear mixed models. Discussion: Assuming superiority of Res@t over the control condition, the intervention has the potential to provide evidence-based treatment for a significant number of help-seeking families, supporting local healthcare structures and resources. It is a promising program for practicable implementation and flexible use in different settings. Clinical trial registration: https://drks.de, DRKS00031043.

4.
Sci Rep ; 11(1): 21512, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728684

RESUMEN

Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10-17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.


Asunto(s)
Cognición/fisiología , Corteza Prefontal Dorsolateral/fisiología , Memoria a Corto Plazo/fisiología , Análisis y Desempeño de Tareas , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Niño , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas
5.
Prog Brain Res ; 264: 363-386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34167663

RESUMEN

INTRODUCTION: Transcranial direct current stimulation (tDCS) is a brain stimulation technique for an alternative or complementary treatment for various neurological disorders, including pediatric ADHD. However, little is known about the experiences of participants undergoing tDCS treatments in clinical trials. Exploration of their views on the matter is an important contribution to the societal debate on ethical issues of tDCS, allowing for a responsible translation into clinical practice and timely identification of potential challenges. METHODS: in-depth interviews study with children with ADHD undertaking tDCS and their parents (n=32). RESULTS: Children reported overall good experiences with the stimulation, although they found participation in the clinical study very tiring and time consuming. Their responses to the actual effects of the stimulation were mixed. Parents were very keen for their children to participate in the study as they saw it as a promising and safe alternative to medication. Even though many of them understood the techniques, they often did not see the link between the (current) lack of side effects and an absence of longitudinal studies. Unlike children, interviewed parents were cautious about using tDCS for non-medical/enhancement purposes. DISCUSSION: There is a need for more transparent information about the state of the art of tDCS, its function and what it actually might be able to offer. It is especially important in order to prevent unrealistic hopes and to make sure that future pediatric patients and their carers are more aware of the potential side-effects and long-term effects of tDCS.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulación Transcraneal de Corriente Directa , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/terapia , Encéfalo , Niño , Humanos , Memoria a Corto Plazo , Padres
6.
Prog Brain Res ; 264: 91-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34167666

RESUMEN

BACKGROUND: Evidence for the application of transcranial direct current stimulation (tDCS) in the clinical care of attention-deficit/hyperactivity disorder (ADHD) is limited. Therefore, we aimed to summarize study results using meta-analyses of measures of the cardinal symptoms of ADHD. METHODS: We conducted a systematic literature search (PubMed/pubpsych/PsychInfo/WOS) until 01/05/2020 for randomized controlled trials (RCTs) evaluating tDCS vs. control condition in patients with ADHD. A random effects meta-analysis of symptom-related outcomes was performed separately for data on the immediate effect and follow-up. Subgroup- and metaregression analyses for patient characteristics and tDCS parameters were included. RESULTS: Meta-analyzing 13 studies (n=308, age=23.7±13.3), including 20 study arms, tDCS had an immediate effect on overall symptom severity, inattention, and impulsivity, but not on hyperactivity. Results were significant in children and adolescents (8 studies, n=133, age=12.4±3.0). Follow-up data (3 days-4 weeks after stimulation) suggested an ongoing beneficial effect regarding overall symptom severity and a delayed effect on hyperactivity. DISCUSSION: TDCS seems to be a promising method to treat clinical symptoms in ADHD with long-lasting effects. Still, more research considering the individual neuropsychological and anatomical dispositions of the subjects is needed to optimize tDCS protocols and efficacy. Safety issues of tDCS treatment in children and adolescents are addressed.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/terapia , Niño , Cognición , Humanos , Conducta Impulsiva , Resultado del Tratamiento , Adulto Joven
7.
Front Hum Neurosci ; 14: 349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100989

RESUMEN

Anodal transcranial direct current stimulation (tDCS), applied over the left dorsolateral prefrontal cortex (lDLPFC), can produce significant effects on working memory (WM) performance and associated neurophysiological activity. However, results from previous studies are inconsistent and occasionally contradictory. This inconsistency may be attributed to methodological and individual differences during experiments. This study therefore investigated two hypotheses: (1) A multichannel-optimized montage was expected to be more effective than a classical bipolar montage, because of increased focality. (2) The subjects were expected to benefit differently from the stimulation depending on their initial task performance. In a sham-controlled crossover study, 24 healthy participants received bipolar, multichannel, and sham stimulation for 20 min in randomized order, targeting the lDLPFC while performing a 2-back WM task. After stimulation, electroencephalography (EEG) was recorded at rest and during 2-back and nontarget continuous performance task (CPT) performance. Bipolar and multichannel stimulations were both well tolerated and effectively blinded. We found no effect of stimulation on behavioral performance or neuronal oscillations comparing the classical bipolar or multichannel montage with sham stimulation. We did, however, find an interaction between stimulation and initial task performance. For multichannel stimulation, initially low-performing participants tended to improve their WM performance while initially high-performing participants tended to worsen their performance compared to sham stimulation. Both tDCS montages induced changes in neural oscillatory power, which correlated with baseline performance. The worse the participants' initial WM performance was, the more task-related theta power was induced by multichannel and bipolar stimulation. The same effect was observed for alpha power in the nontarget task following multichannel stimulation. Notably, we were not able to show a superiority of multichannel stimulation compared to bipolar stimulation. Still, comparing both montages with sham stimulation, multichannel stimulation led to stronger effects than bipolar stimulation. The current study highlights the importance of investigating different parameters with potential influence on tDCS effects in combination. Our results demonstrate how individual differences in cognitive performance and electrode montages influence effects of tDCS on neuropsychological performance. These findings support the idea of an individualized and optimized stimulation setting, potentially leading to increased tDCS effects.

8.
Neural Plast ; 2018: 3156796, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425735

RESUMEN

Response inhibition is the cognitive process required to cancel an intended action. During that process, a "go" reaction is intercepted particularly by the right inferior frontal gyrus (rIFG) and presupplementary motor area (pre-SMA). After the commission of inhibition errors, theta activity (4-8 Hz) is related to the adaption processes. In this study, we intend to examine whether the boosting of theta activity by electrical stimulation over rIFG reduces the number of errors and the reaction times in a response inhibition task (Go/NoGo paradigm) during and after stimulation. 23 healthy right-handed adults participated in the study. In three separate sessions, theta tACS at 6 Hz, transcranial random noise (tRNS) as a second stimulation condition, and sham stimulation were applied for 20 minutes. Based on behavioral data, this study could not show any effects of 6 Hz tACS as well as full spectrum tRNS on response inhibition in any of the conditions. Since many findings support the relevance of the rIFG for response inhibition, this could mean that 6 Hz activity is not important for response inhibition in that structure. Reasons for our null findings could also lie in the stimulation parameters, such as the electrode montage or the stimulation frequency, which are discussed in this article in more detail. Sharing negative findings will have (1) positive impact on future research questions and study design and will improve (2) knowledge acquisition of noninvasive transcranial brain stimulation techniques.


Asunto(s)
Lateralidad Funcional/fisiología , Inhibición Neural/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Distribución Aleatoria , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...