Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098342

RESUMEN

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Porcinos , Vancomicina/farmacología , Vancomicina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/prevención & control
2.
mSphere ; 7(5): e0030222, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993700

RESUMEN

Amidochelocardin is a broad-spectrum antibiotic with activity against many Gram-positive and Gram-negative bacteria. According to recent data, the antibiotic effect of this atypical tetracycline is directed against the cytoplasmic membrane, which is associated with the dissipation of the membrane potential. Here, we investigated the effect of amidochelocardin on the proteome of Clostridioides difficile to gain insight into the membrane stress physiology of this important anaerobic pathogen. For the first time, the membrane-directed action of amidochelocardin was confirmed in an anaerobic pathogen. More importantly, our results revealed that aromatic compounds potentially play an important role in C. difficile upon dissipation of its membrane potential. More precisely, a simultaneously increased production of enzymes required for the synthesis of chorismate and two putative phenazine biosynthesis proteins point to the production of a hitherto unknown compound in response to membrane depolarization. Finally, increased levels of the ClnAB efflux system and its transcriptional regulator ClnR were found, which were previously found in response to cationic antimicrobial peptides like LL-37. Therefore, our data provide a starting point for a more detailed understanding of C. difficile's way to counteract membrane-active compounds. IMPORTANCE C. difficile is an important anaerobe pathogen causing mild to severe infections of the gastrointestinal tract. To avoid relapse of the infection following antibiotic therapy, antibiotics are needed that efficiently eradicate C. difficile from the intestinal tract. Since C. difficile was shown to be substantially sensitive to membrane-active antibiotics, it has been proposed that membrane-active antibiotics might be promising for the therapy of C. difficile infections. Therefore, we studied the response of C. difficile to amidochelocardin, a membrane-active antibiotic dissipating the membrane potential. Interestingly, C. difficile's response to amidochelocardin indicates a role of aromatic metabolites in mediating stress caused by dissipation of the membrane potential.


Asunto(s)
Clostridioides difficile , Clostridioides , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Proteoma , Tetraciclinas/farmacología , Fenazinas/farmacología
3.
Gut Pathog ; 14(1): 4, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991700

RESUMEN

The anaerobic, gastrointestinal pathogen Clostridioides difficile can cause severe forms of enterocolitis which is mainly mediated by the toxins it produces. The RNA polymerase inhibitor Fidaxomicin is the current gold standard for the therapy of C. difficile infections due to several beneficial features including its ability to suppress toxin synthesis in C. difficile. In contrast to the Rifamycins, Fidaxomicin binds to the RNA polymerase switch region, which is also the binding site for Myxopyronin B. Here, serial broth dilution assays were performed to test the susceptibility of C. difficile and other anaerobes to Myxopyronin B, proving that the natural product is considerably active against C. difficile and that there is no cross-resistance between Fidaxomicin and Myxopyronin B in a Fidaxomicin-resistant C. difficile strain. Moreover, mass spectrometry analysis indicated that Myxopyronin B is able to suppress early phase toxin synthesis in C. difficile to the same degree as Fidaxomicin. Conclusively, Myxopyronin B is proposed as a new lead structure for the design of novel antibiotics for the therapy of C. difficile infections.

4.
Front Microbiol ; 12: 682111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177868

RESUMEN

The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile's V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.

5.
Infect Immun ; 84(12): 3484-3495, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27672084

RESUMEN

Neisseria meningitidis, the meningococcus, bears the potential to cause life-threatening invasive diseases, but it usually colonizes the nasopharynx without causing any symptoms. Within the nasopharynx, Neisseria meningitidis must face temperature changes depending on the ambient air temperature. Indeed, the nasopharyngeal temperature can be substantially lower than 37°C, the temperature commonly used in experimental settings. Here, we compared the levels of meningococcal biofilm formation, autoaggregation, and cellular adherence at 32°C and 37°C and found a clear increase in all these phenotypes at 32°C suggestive of a stronger in vivo colonization capability at this temperature. A comparative proteome analysis approach revealed differential protein expression levels between 32°C and 37°C, predominantly affecting the bacterial envelope. A total of 375 proteins were detected. Use of database annotation or the PSORTb algorithm predicted 49 of those proteins to be localized in the outer membrane, 21 in either the inner or outer membrane, 35 in the periplasm, 56 in the inner membrane, and 208 in the cytosol; for 6 proteins, no annotation or prediction was available. Temperature-dependent regulation of protein expression was seen particularly in the periplasm as well as in the outer and inner membranes. Neisserial heparin binding antigen (NHBA), NMB1030, and adhesin complex protein (ACP) showed the strongest upregulation at 32°C and were partially responsible for the observed temperature-dependent phenotypes. Screening of different global regulators of Neisseria meningitidis suggested that the extracytoplasmic sigma factor σE might be involved in temperature-dependent biofilm formation. In conclusion, subtle temperature changes trigger adaptation events promoting mucosal colonization by meningococci.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Neisseria meningitidis/fisiología , Proteoma/metabolismo , Temperatura , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...