Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transpl Infect Dis ; : e14296, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830809

RESUMEN

BACKGROUND: Reactivation of viral infections, in particular cytomegalovirus (CMV) and adenovirus (ADV), cause morbidity and non-relapse-mortality in states of immune deficiency, especially after allogeneic hematopoietic cell transplantation (allo-HCT). Against the background of few available pharmacologic antiviral agents, limited by toxicities and resistance, adoptive transfer of virus-specific T-cells (VST) is a promising therapeutic approach. METHODS: We conducted a single-center retrospective analysis of adult patients treated with ADV- or CMV-specific T-cells in 2012-2022. Information was retrieved by review of electronic health records. Primary outcome was a response to VST by decreasing viral load or clinical improvement. Secondary outcomes included overall survival and safety of VST infusion, in particular association with graft-versus-host disease (GVHD). RESULTS: Ten patients were included, of whom four were treated for ADV, five for CMV, and one for ADV-CMV-coinfection. Cells were derived from stem cell donors (6/10) or third-party donors (4/10). Response criteria were met by six of 10 patients (4/4 ADV, 2/5 CMV, and 0/1 ADV-CMV). Overall survival was 40%. No infusion related adverse events were documented. Aggravation of GVHD after adoptive immunotherapy was observed in two cases, however in temporal association with a conventional donor lymphocyte infusion and a stem cell boost, respectively. CONCLUSION: In this cohort, CMV- and ADV-specific T-cell therapy appear to be safe and effective. We describe the first reported case of virus-specific T-cell therapy for CMV reactivation not associated with transplantation but with advanced HIV infection. This encourages further evaluation of adoptive immunotherapy beyond the context of allo-HCT.

2.
Front Cell Infect Microbiol ; 14: 1335946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333034

RESUMEN

The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.


Asunto(s)
Echinococcus multilocularis , Parásitos , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Parásitos/genética , Larva , Perfilación de la Expresión Génica , Técnicas de Cultivo de Célula , Células Madre , Mamíferos/genética
3.
JAMA ; 329(24): 2154-2162, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367976

RESUMEN

Importance: Autoimmune disorders can affect various organs and if refractory, can be life threatening. Recently, CD19-targeting-chimeric antigen receptor (CAR) T cells were efficacious as an immune suppressive agent in 6 patients with refractory systemic lupus erythematosus and in 1 patient with antisynthetase syndrome. Objective: To test the safety and efficacy of CD19-targeting CAR T cells in a patient with severe antisynthetase syndrome, a complex autoimmune disorder with evidence for B- and T-cell involvement. Design, Setting, and Participants: This case report describes a patient with antisynthetase syndrome with progressive myositis and interstitial lung disease refractory to available therapies (including rituximab and azathioprine), who was treated with CD19-targeting CAR T cells in June 2022 at University Hospital Tübingen in Tübingen, Germany, with the last follow-up in February 2023. Mycophenolate mofetil was added to the treatment to cotarget CD8+ T cells, hypothesized to contribute to disease activity. Exposure: Prior to treatment with CD19-targeting CAR T cells, the patient received conditioning therapy with fludarabine (25 mg/m2 [5 days before until 3 days before]) and cyclophosphamide (1000 mg/m2 [3 days before]) followed by infusion of CAR T cells (1.23×106/kg [manufactured by transduction of autologous T cells with a CD19 lentiviral vector and amplification in the CliniMACS Prodigy system]) and mycophenolate mofetil (2 g/d) 35 days after CD19-targeting CAR T-cell infusion. Main Outcomes and Measures: The patient's response to therapy was followed by magnetic resonance imaging of the thigh muscle, Physician Global Assessment, functional muscle and pulmonary tests, and peripheral blood quantification of anti-Jo-1 antibody levels, lymphocyte subsets, immunoglobulins, and serological muscle enzymes. Results: Rapid clinical improvement was observed after CD19-targeting CAR T-cell infusion. Eight months after treatment, the patient's scores on the Physician Global Assessment and muscle and pulmonary function tests improved, and there were no detectable signs of myositis on magnetic resonance imaging. Serological muscle enzymes (alanine aminotransferase, aspartate aminotransferase, creatinine kinase, and lactate dehydrogenase), CD8+ T-cell subsets, and inflammatory cytokine secretion in the peripheral blood mononuclear cells (interferon gamma, interleukin 1 [IL-1], IL-6, and IL-13) were all normalized. Further, there was a reduction in anti-Jo-1 antibody levels and a partial recovery of IgA (to 67% of normal value), IgG (to 87%), and IgM (to 58%). Conclusions and Relevance: CD19-targeting CAR T cells directed against B cells and plasmablasts deeply reset B-cell immunity. Together with mycophenolate mofetil, CD19-targeting CAR T cells may break pathologic B-cell, as well as T-cell responses, inducing remission in refractory antisynthetase syndrome.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Enfermedades Pulmonares Intersticiales , Miositis , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD19/inmunología , Leucocitos Mononucleares , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/terapia , Ácido Micofenólico/administración & dosificación , Ácido Micofenólico/uso terapéutico , Miositis/complicaciones , Miositis/inmunología , Miositis/terapia , Receptores de Antígenos de Linfocitos T , Ciclofosfamida/administración & dosificación , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico
4.
Haematologica ; 108(8): 2080-2090, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794500

RESUMEN

Therapy-resistant viral reactivations contribute significantly to mortality after hematopoietic stem cell transplantation. Adoptive cellular therapy with virus-specific T cells (VST) has shown efficacy in various single-center trials. However, the scalability of this therapy is hampered by laborious production methods. In this study we describe the in-house production of VST in a closed system (CliniMACS Prodigy® system, Miltenyi Biotec). In addition, we report the efficacy in 26 patients with viral disease following hematopoietic stem cell transplantation in a retrospective analysis (adenovirus, n=7; cytomegalovirus, n=8; Epstein-Barr virus, n=4; multi-viral, n=7). The production of VST was successful in 100% of cases. The safety profile of VST therapy was favorable (n=2 grade 3 and n=1 grade 4 adverse events; all three were reversible). A response was seen in 20 of 26 patients (77%). Responding patients had a significantly better overall survival than patients who did not respond (P<0.001). Virus-specific symptoms were reduced or resolved in 47% of patients. The overall survival of the whole cohort was 28% after 6 months. This study shows the feasibility of automated VST production and safety of application. The scalability of the CliniMACS Prodigy® device increases the accessibility of VST treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Células Madre Hematopoyéticas , Virosis , Humanos , Linfocitos T , Infecciones por Virus de Epstein-Barr/terapia , Estudios Retrospectivos , Herpesvirus Humano 4 , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Virosis/etiología , Virosis/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre
5.
Cancer Immunol Immunother ; 70(12): 3693-3700, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34173009

RESUMEN

The PI3Kδ-inhibitor Idelalisib is approved for the treatment of Non-Hodgkin lymphoma. However, its use has been decreased within the last years due to deleterious infections such as cytomegalovirus and pneumocystis jirovecii. Here, we have investigated the effect of Idelalisib on human monocyte-derived dendritic cells (DCs) as important players in the induction of immune responses. We found that Idelalisib-treated DCs displayed impaired T cell stimulatory function. PI3Kδ inhibition during differentiation resulted in decreased Interleukin-12, Interleukin-13 and TNFα production by DCs after lipopolysaccharide stimulation. Moreover, DCs showed decreased expression of the activation marker CD83 after Idelalisib treatment. Further, in line with this was the failure of Idelalisib-treated DCs to properly induce allogeneic T cells in a dose-dependent manner. Finally, activation of the NFκB pathway was also ablated in Idelalisib-treated DCs. Our results implicate that severe infectious complications may not only result from direct PI3Kδ-inhibition in T cells, but also from impaired DC function in Idelalisib-treated patients. Here, we provide new insight into the pathogenesis of Idelalisib-associated infectious complications. Our study may further provide a rationale for the use of Idelalisib as a novel therapeutic option in inflammatory diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Células Dendríticas/efectos de los fármacos , Purinas/farmacología , Quinazolinonas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Inmunidad/efectos de los fármacos , Interleucina-12/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...