Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(10): 4195-4212, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766642

RESUMEN

The dapsone/flavone cocrystal system served as a benchmark for both experimental and virtual screening methods. Expanding beyond this, two additional active pharmaceutical ingredients (APIs), sulfanilamide and sulfaguanidine, structurally related to dapsone were chosen to investigate the impact of substituents on cocrystal formation. The experimental screening involved mechanochemical methods, slurry experiments, hot-melt extrusion, and the contact preparation method. The virtual screening focused on crystal structure prediction (CSP), molecular complementarity, hydrogen-bond propensity, and molecular electrostatic potentials. The CSP studies not only indicated that each of the three APIs should form cocrystals with flavone but also reproduced the known single- and multicomponent phases. Experimentally, dapsone/flavone cocrystals ACC, BCC, CCC, and DCC were reproduced, CCC was identified as a nonstoichiometric hydrate, and a fifth cocrystal (ECC), a t-butanol solvate, was discovered. The cocrystal polymorphs ACC and BCC are enantiotripically related, and DCC, exhibiting a different stoichiometric ratio, is enthalpically stabilized over the other cocrystals. For the sulfaguanidine/flavone system, two novel, enantiotripically related cocrystals were identified. The crystal structures of two cocrystals and a flavone polymorph were solved from powder X-ray diffraction data, and the stability of all cocrystals was assessed through differential scanning calorimetry and lattice energy calculations. Despite computational indications, a diverse array of cocrystallization techniques did not result in a sulfanilamide/flavone cocrystal. The driving force behind dapsone's tendency to cocrystallize with flavone can be attributed to the overall strength of flavone interactions in the cocrystals. For sulfaguanidine, the potential to form strong API···API and API···coformer interactions in the cocrystal is a contributing factor. Furthermore, flavone was found to be trimorphic.

2.
Cryst Growth Des ; 24(3): 1438-1457, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38344672

RESUMEN

A thorough re-examination of sulfaguanidine's (SGD) solid-state behavior was conducted, 65 years after the initial report on SGD polymorphism. This investigation focuses on the polymorphic nature of the compound, the formation of hydrates and solvates, and the pivotal role of experimental and computational methods in screening, assessing stability, and understanding transformation processes. The findings confirm the presence of five anhydrates (AH-I-V), two monohydrate polymorphs (Hy1-I and Hy1-II), and nine solvates (with tetrahydrofuran, methanol, ethanol, t-butanol, acetone, cyclohexanone, dimethyl sulfoxide, dimethyl formamide, and dimethyl acetamide). Notably, nine novel structures-two anhydrates and seven solvates-are reported, solved from powder X-ray diffraction data. Calorimetric measurements have revealed that AH-II is the thermodynamically stable polymorph at room and low temperatures. In contrast, AH-I emerges as the stable polymorph at higher temperatures, yet it exhibits remarkable kinetic stability at RT and demonstrates greater stability in terms of hydration. The anhydrate forms exhibit distinctive packing arrangements, while the two hydrates share a close structural resemblance. Among the seven structurally characterized solvates, only the tetrahydrofuran and dimethyl sulfoxide solvates are isostructural. Controlled desolvation experiments enabled the formation of AH-I, AH-II, and, notably, AH-V for the first time. The anhydrate and monohydrate crystal structure prediction studies reveal that the computed lowest-energy structures correspond to experimentally observed forms and propose models for the elusive AH-IV structure. Overall, the exploration of SGD's solid-state landscape confirms a rich array of highly stable H-bonding motifs and packing arrangements, positioning this study as an ideal model for complex solid-state systems and shedding light on its intricate solid-state nature.

3.
Nature ; 623(7986): 324-328, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938708

RESUMEN

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

4.
Cryst Growth Des ; 23(11): 8241-8260, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937188

RESUMEN

In this study, key features of metronidazole (MNZ) cocrystal polymorphs with gallic acid (GAL) and gentisic acid (GNT) were elucidated. Solvent-mediated phase transformation experiments in 30 solvents with varying properties were employed to control the polymorphic behavior of the MNZ cocrystal with GAL. Solvents with relative polarity (RP) values above 0.35 led to cocrystal I°, the thermodynamically stable form. Conversely, solvents with RP values below 0.35 produced cocrystal II, which was found to be only 0.3 kJ mol-1 less stable in enthalpy. The feasibility of electrospraying, including solvent properties and process conditions required, and spray drying techniques to control cocrystal polymorphism was also investigated, and these techniques were found to facilitate exclusive formation of the metastable MNZ-GAL cocrystal II. Additionally, the screening approach resulted in a new, high-temperature polymorph I of the MNZ-GNT cocrystal system, which is enantiotropically related to the already known form II°. The intermolecular energy calculations, as well as the 2D similarity between the MNZ-GAL polymorphs and the 3D similarity between MNZ-GNT polymorphs, rationalized the observed transition behaviors. Furthermore, the evaluation of virtual cocrystal screening techniques identified molecular electrostatic potential calculations as a supportive tool for coformer selection.

5.
Cryst Growth Des ; 23(6): 4638-4654, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37304396

RESUMEN

The application of computational screening methodologies based on H-bond propensity scores, molecular complementarity, molecular electrostatic potentials, and crystal structure prediction has guided the discovery of novel cocrystals of dapsone and bipyridine (DDS:BIPY). The experimental screen, which included mechanochemical and slurry experiments as well as the contact preparation, resulted in four cocrystals, including the previously known DDS:4,4'-BIPY (2:1, CC44-B) cocrystal. To understand the factors governing the formation of the DDS:2,2'-BIPY polymorphs (1:1, CC22-A and CC22-B) and the two DDS:4,4'-BIPY cocrystal stoichiometries (1:1 and 2:1), different experimental conditions (such as the influence of solvent, grinding/stirring time, etc.) were tested and compared with the virtual screening results. The computationally generated (1:1) crystal energy landscapes had the experimental cocrystals as the lowest energy structures, although distinct cocrystal packings were observed for the similar coformers. H-bonding scores and molecular electrostatic potential maps correctly indicated cocrystallization of DDS and the BIPY isomers, with a higher likelihood for 4,4'-BIPY. The molecular conformation influenced the molecular complementarity results, predicting no cocrystallization for 2,2'-BIPY with DDS. The crystal structures of CC22-A and CC44-A were solved from powder X-ray diffraction data. All four cocrystals were fully characterized by a range of analytical techniques, including powder X-ray diffraction, infrared spectroscopy, hot-stage microscopy, thermogravimetric analysis, and differential scanning calorimetry. The two DDS:2,2'-BIPY polymorphs are enantiotropically related, with form B being the stable polymorph at room temperature (RT) and form A being the higher temperature form. Form B is metastable but kinetically stable at RT. The two DDS:4,4'-BIPY cocrystals are stable at room conditions; however, at higher temperatures, CC44-A transforms to CC44-B. The cocrystal formation enthalpy order, derived from the lattice energies, was calculated as follows: CC44-B > CC44-A > CC22-A.

6.
Cryst Growth Des ; 23(3): 1874-1887, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36879772

RESUMEN

The possibility of obtaining cocrystals of kojic acid with organic coformers has been investigated by both computational and experimental approaches. Cocrystallization attempts have been carried out with about 50 coformers, in different stoichiometric ratios, by solution, slurry, and mechanochemical methods. Cocrystals were obtained with 3-hydroxybenzoic acid, imidazole, 4-pyridone, DABCO, and urotropine, while piperazine yielded a salt with the kojiate anion; cocrystallization with theophylline and 4-aminopyridine resulted in stoichiometric crystalline complexes that could not be described with certainty as cocrystals or salts. In the cases of panthenol, nicotinamide, urea, and salicylic acid the eutectic systems with kojic acid were investigated via differential scanning calorimetry. In all other preparations the resulting materials were constituted of a mixture of the reactants. All compounds were investigated by powder X-ray diffraction; the five cocrystals and the salt were fully characterized via single crystal X-ray diffraction. The stability of the cocrystals and the intermolecular interactions in all characterized compounds have been investigated by computational methods based on the electronic structure and pairwise energy calculations, respectively.

7.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501674

RESUMEN

Circularity of cellulose-based pre- and post-consumer wastes requires an integrated approach which has to consider the characteristics of the fibre polymer and the presence of dyes and additives from textile chemical processing as well. Fibre-to-fibre recycling is a condition to avoid downcycling of recycled material. For cellulose fibres regeneration via production of regenerated cellulose fibres is the most promising approach. Textile wastes contain dyes and additives, thus a recycling technique has to be robust enough to process such material. In an ideal case the reuse of colorants can be achieved as well. At present nearly 80% of the regenerated cellulose fibre production utilises the viscose process, therefore this technique was chosen to investigate the recycling of dyed material including the reuse of the colorant. In this work, for the first time, a compilation of all required process steps to a complete circular concept is presented and discussed as a model. Indigo-dyed viscose fibres were used as a model to study cellulose recycling via production of regenerated cellulose fibres to avoid downcycling. Indigo was found compatible to the alkalisation and xanthogenation steps in the viscose process and blue coloured cellulose regenerates were recovered from indigo-dyed cellulose. A supplemental addition of reduced indigo to the cellulose solution was also found feasible to adjust colour depth in the regenerated cellulose to the level required for use as warp material in denim production. By combination of fibre recycling and indigo dyeing the conventional yarn dyeing in denim production can be omitted. Model calculations for the savings in water and chemical consumption demonstrate the potential of the process. The proportion of the substitution will depend on the collection rate of denim wastes and on the efficiency of the fibre regeneration process. Estimates indicate that a substitution of more than 70% of the cotton fibres by regenerated cellulose fibres could be achieved when 80% of the pre- and post-consumer denim wastes are collected. Therefore, the introduction of fibre recycling via regenerated cellulose fibres will also make a substantial impact on the cotton consumption for jeans production.

9.
Cryst Growth Des ; 22(7): 4513-4527, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35915670

RESUMEN

Controlling the physical properties of solid forms for active pharmaceutical ingredients (APIs) through cocrystallization is an important part of drug product development. However, it is difficult to know a priori which coformers will form cocrystals with a given API, and the current state-of-the-art for cocrystal discovery involves an expensive, time-consuming, and, at the early stages of pharmaceutical development, API material-limited experimental screen. We propose a systematic, high-throughput computational approach primarily aimed at identifying API/coformer pairs that are unlikely to lead to experimentally observable cocrystals and can therefore be eliminated with only a brief experimental check, from any experimental investigation. On the basis of a well-established crystal structure prediction (CSP) methodology, the proposed approach derives its efficiency by not requiring any expensive quantum mechanical calculations beyond those already performed for the CSP investigation of the neat API itself. The approach and assumptions are tested through a computational investigation on 30 potential 1:1 multicomponent systems (cocrystals and solvate) involving 3 active pharmaceutical ingredients and 9 coformers and one solvent. This is complemented with a detailed experimental investigation of all 30 pairs, which led to the discovery of five new cocrystals (three API-coformer combinations, a polymorphic cocrystal example, and one with different stoichiometries) and a cis-aconitic acid polymorph. The computational approach indicates that, for some APIs, a significant proportion of all potential API/coformer pairs could be investigated with only a brief experimental check, thereby saving considerable experimental effort.

10.
Mol Pharm ; 19(2): 456-471, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35050637

RESUMEN

Control over polymorphism and solvatomorphism in API assisted by structural information, e.g., molecular conformation or associations via hydrogen bonds, is crucial for the industrial development of new drugs, as the crystallization products differ in solubility, dissolution profile, compressibility, or melting temperature. The stability of the final formulation and technological factors of the pharmaceutical powders further emphasize the importance of precise crystallization protocols. This is particularly important when working with highly flexible molecules with considerable conformational freedom and a large number of hydrogen bond donors or acceptors (e.g., fluconazole, FLU). Here, cooling and suspension crystallization were applied to access polymorphs and solvates of FLU, a widely used azole antifungal agent with high molecular flexibility and several reported polymorphs. Each of four polymorphic forms, FLU I, II, III, or IV, can be obtained from the same set of alcohols (MeOH, EtOH, isPrOH) and DMF via careful control of the crystallization conditions. For the first time, two types of isostructural channel solvates of FLU were obtained (nine new structures). Type I solvates were prepared by cooling crystallization in Tol, ACN, DMSO, BuOH, and BuON. Type II solvates formed in DCM, ACN, nPrOH, and BuOH during suspension experiments. We propose desolvation pathways for both types of solvates based on the structural analysis of the newly obtained solvates and their desolvation products. Type I solvates desolvate to FLU form I by hydrogen-bonded chain rearrangements. Type II solvates desolvation leads first to an isomorphic desolvate, followed by a phase transition to FLU form II through hydrogen-bonded dimer rearrangement. Combining solvent-mediated phase transformations with structural analysis and solid-state NMR, supported by periodic electronic structure calculations, allowed us to elucidate the interrelations and transformation pathways of FLU.


Asunto(s)
Fluconazol , Cristalización , Conformación Molecular , Solventes/química , Termogravimetría
11.
Cryst Growth Des ; 21(12): 7201-7217, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34867088

RESUMEN

Two bipyridine isomers (2,2'- and 4,4'-), used as coformers and ligands in coordination chemistry, were subjected to solid form screening and crystal structure prediction. One anhydrate and a formic acid disolvate were crystallized for 2,2'-bipyridine, whereas multiple solid-state forms, anhydrate, dihydrate, and eight solvates with carboxylic acids, including a polymorphic acetic acid disolvate, were found for the 4,4'-isomer. Seven of the solvates are reported for the first time, and structural information is provided for six of the new solvates. All twelve solid-state forms were investigated comprehensively using experimental [thermal analysis, isothermal calorimetry, X-ray diffraction, gravimetric moisture (de)sorption, and IR spectroscopy] and computational approaches. Lattice and interaction energy calculations confirmed the thermodynamic driving force for disolvate formation, mediated by the absence of H-bond donor groups of the host molecules. The exposed location of the N atoms in 4,4'-bipyridine facilitates the accommodation of bigger carboxylic acids and leads to higher conformational flexibility compared to 2,2'-bipyridine. For the 4,4'-bipyridine anhydrate ↔ hydrate interconversion hardly any hysteresis and a fast transformation kinetics are observed, with the critical relative humidity being at 35% at room temperature. The computed anhydrate crystal energy landscapes have the 2,2'-bipyridine as the lowest energy structure and the 4,4'-bipyridine among the low-energy structures and suggest a different crystallization behavior of the two compounds.

12.
Biomacromolecules ; 22(9): 3980-3991, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459197

RESUMEN

In the present study, chitosan (CS) was thiolated by introducing l-cysteine via amide bond formation. Free thiol groups were protected with highly reactive 6-mercaptonicotinic acid (6-MNA) and less-reactive l-cysteine, respectively, via thiol/disulfide-exchange reactions. Unmodified CS, l-cysteine-modified thiolated CS (CS-Cys), 6-MNA-S-protected thiolated CS (CS-Cys-MNA), and l-cysteine-S-protected thiolated CS (CS-Cys-Cys) were applied as coating materials to solid lipid nanoparticles (SLN). The strength of mucus interaction followed the rank order plain < CS < CS-Cys-Cys < CS-Cys < CS-Cys-MNA, whereas mucus diffusion followed the rank order CS-Cys < CS-Cys-Cys < CS < CS-Cys-MNA < plain. In accordance with lower reactivity, CS-Cys-Cys-coated SLN were immobilized to a lower extent than CS-Cys-coated SLN, while CS-Cys-MNA-coated SLN dissociated from their coating material resulting in a similar diffusion behavior as plain SLN. Consequently, CS-Cys-Cys-coated SLN and CS-Cys-MNA-coated SLN showed the highest retention on porcine intestinal mucosa by enabling a synergism of efficient mucus diffusion and strong mucoadhesion.


Asunto(s)
Quitosano , Nanopartículas , Animales , Células CACO-2 , Cisteína , Humanos , Lípidos , Compuestos de Sulfhidrilo , Porcinos
14.
Cryst Growth Des ; 20(9): 6069-6083, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32913424

RESUMEN

Commercial samples of strychnine sulfate were used as the starting material in crystallization experiments accompanied by stability studies. Eight hydrate forms (HyA-HyG), including five novel hydrates, were verified. The crystal structures of HyA ("pentahydrate") and HyF ("hexahydrate") were determined from single-crystal X-ray diffraction data. HyF was identified as the most stable hydrate at high water activities at room temperature (RT), and HyA and HyC were also found to be stable at ambient conditions. Long-time storage experiments over nearly two decades confirm that these three hydrates are stable at ambient conditions (20-60% relative humidity). The other five hydrates, HyB ("dihydrate"), HyD, HyE, HyG, and HyH, are only observable at the low(est) relative humidity (RH) levels at RT. Some of these latter forms can only exist within a very narrow RH range and are therefore intermediate phases. By applying a range of complementary experimental techniques such as gravimetric moisture sorption analysis, thermal analysis, moisture controlled PXRD measurements, and variable temperature IR spectroscopy in combination with principal component analysis, it was possible to identify the distinct hydrate phases and elucidate their stability and dehydration pathways. The observed (de)hydration routes, HyA ↔ HyB, HyC ↔ HyD ↔ HyE, HyF ↔ HyG ↔ HyH and HyF → HyA ↔ HyB, depended on the initial hydrate form, particle size, and atmospheric conditions. In addition, a transformation from HyC/HyA to HyF occurs at high RH values at RT. The specific moisture and temperature conditions of none of the applied drying regimes yielded a crystalline water-free form, which highlights the essential role of water molecules for the formation and stability of the crystalline strychnine sulfate phases.

15.
Cryst Growth Des ; 19(11): 6058-6066, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728132

RESUMEN

Understanding the behavior and properties of molecules assembled in thin layers requires knowledge of their crystalline packing. The drug phenytoin (5,5-diphenylhydantoin) is one of the compounds that can be grown as a surface induced polymorph. By using grazing incidence X-ray diffraction, the monoclinic unit cell of the new form II can be determined, but, due to crystal size and the low amount of data, a full solution using conventional structure solving strategies fails. In this work, the full solution has been obtained by combining computational structure generation and experimental results. The comparison between the bulk and the new surface induced phase reveals significant packing differences of the hydrogen-bonding network, which might be the reason for the faster dissolution of form II with respect to form I. The results are very satisfactory, and the method might be adapted for other systems, where, due to the limited amount of experimental data, one must rely on additional approaches to gain access to more detailed information to understand the solid-state behavior.

16.
Phys Chem Chem Phys ; 21(31): 17288-17305, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31348477

RESUMEN

The monosolvate crystal energy landscapes of dapsone (DDS) including the solvents carbon tetrachloride, acetone, cyclohexanone, dimethyl formamide, tetrahydrofuran, methyl ethyl ketone, 1,2-dichloroethane, 1,4-dioxane, dichloromethane and chloroform were established using experimental and computational approaches. To rationalise and understand solvate formation, solvate stability and desolvation reactions a careful control of the experimental crystallisation and storage conditions, a range of thermoanalytical methods and crystal structure prediction were required. Six of the eight DDS monosolvates are reported and characterised for the first time. Structural similarity and diversity of the at ambient conditions unstable monosolvates were apparent from the computed crystal energy landscapes, which had the experimental packings as lowest energy structures. The computed structures were used as input for Rietveld refinements and isostructurality of four of the monosolvates was confirmed. Packing comparisons of the solvate structures and molecular properties of the solvent molecules indicated that both size/shape of the solvent molecule and the possible DDSsolvent interactions are the important factors for DDS solvate formation. Through the combination of experiment and theory solvate stability and structural features have been rationalised.

17.
Mol Pharm ; 16(7): 3221-3236, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075201

RESUMEN

Five anhydrate polymorphs (forms I-V) and the isomorphic dehydrate (Hydehy) of dapsone (4,4'-diaminodiphenyl sulfone or DDS) were prepared and characterized in an interdisciplinary experimental and computational study, elucidating the kinetic and thermodynamic stabilities, solid form interrelationships, and structural features of the known forms I-IV, the novel polymorph form V, and Hydehy. Calorimetric measurements, solubility experiments, and lattice energy calculations revealed that form V is the thermodynamically stable polymorph from absolute zero to at least 90 °C. At higher temperatures, form II, and then form I, becomes the most stable DDS solid form. The computed 0 K stability order (lattice energy calculations) was confirmed with calorimetric measurements as follows, V (most stable) > III > Hydehy > II > I > IV (least stable). The discovery of form V was complicated by the fact that the metastable but kinetically stabilized form III shows a higher nucleation and growth rate. By combining laboratory powder X-ray diffraction data and ab initio calculations, the crystal structure of form V ( P21/ c, Z' = 4) was solved, with a high energy DDS conformation allowing a denser packing and more stable intermolecular interactions, rationalizing the formation of a high Z' structure. The structures of the forms I and IV, only observed from the melt and showing distinct packing features compared to the forms II, III, and V, were derived from the computed crystal energy landscapes. Dehydration modeling of the DDS hydrate led to the Hydehy structure. This study expands our understanding about the complex crystallization behavior of pharmaceuticals and highlights the big challenge in solid form screening, especially that there is no clear end point.


Asunto(s)
Química Farmacéutica/métodos , Química Computacional/métodos , Cristalización/métodos , Dapsona/análogos & derivados , Dapsona/química , Entropía , Temperatura de Transición , Absorción Fisicoquímica , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Enlace de Hidrógeno , Cinética , Conformación Molecular , Solubilidad , Agua/química , Difracción de Rayos X
18.
Cryst Growth Des ; 19(11): 6067-6073, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33828438

RESUMEN

A method for structure solution in thin films that combines grazing incidence X-ray diffraction data analysis and crystal structure prediction was presented in a recent work (Braun et al. Cryst. Growth Des.2019, DOI: 10.1021/acs.cgd.9b00857). Applied to phenytoin form II, which is only detected in films, the approach gave a very reasonable, but not fully confirmed, candidate structure with Z = 4 and Z' = 2. In the present work, we demonstrate how, by calculating and measuring the crystal Raman spectrum in the low wavenumber energy region with the aim of validating the candidate structure, this can be further refined. In fact, we find it to correspond to a saddle point of the energy landscape of the system, from which a minimum of lower symmetry may be reached. With the new structure, with Z = 4 and Z' = 2, we finally obtain an excellent agreement between experimental and calculated Raman spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...