Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(14): 146303, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640372

RESUMEN

We measure the thermal conductivity of solid and molten tungsten using steady state temperature differential radiometry. We demonstrate that the thermal conductivity can be well described by application of Wiedemann-Franz law to electrical resistivity data, thus suggesting the validity of Wiedemann-Franz law to capture the electronic thermal conductivity of metals in their molten phase. We further support this conclusion using ab initio molecular dynamics simulations with a machine-learned potential. Our results show that at these high temperatures, the vibrational contribution to thermal conductivity is negligible compared to the electronic component.

2.
Nat Commun ; 13(1): 1573, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322003

RESUMEN

Materials with tunable thermal properties enable on-demand control of temperature and heat flow, which is an integral component in the development of solid-state refrigeration, energy scavenging, and thermal circuits. Although gap-based and liquid-based thermal switches that work on the basis of mechanical movements have been an effective approach to control the flow of heat in the devices, their complex mechanisms impose considerable costs in latency, expense, and power consumption. As a consequence, materials that have multiple solid-state phases with distinct thermal properties are appealing for thermal management due to their simplicity, fast switching, and compactness. Thus, an ideal thermal switch should operate near or above room temperature, have a simple trigger mechanism, and offer a quick and large on/off switching ratio. In this study, we experimentally demonstrate that manipulating phonon scattering rates can switch the thermal conductivity of antiferroelectric PbZrO3 bidirectionally by -10% and +25% upon applying electrical and thermal excitation, respectively. Our approach takes advantage of two separate phase transformations in PbZrO3 that alter the phonon scattering rate in different manners. In this study, we demonstrate that PbZrO3 can serve as a fast (<1 second), repeatable, simple trigger, and reliable thermal switch with a net switching ratio of nearly 38% from ~1.20 to ~1.65 W m-1 K-1.

3.
Rev Sci Instrum ; 92(6): 064906, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243549

RESUMEN

Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump-probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump-probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump-probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.

4.
ACS Nano ; 15(6): 9588-9599, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-33908771

RESUMEN

High thermal conductivity materials show promise for thermal mitigation and heat removal in devices. However, shrinking the length scales of these materials often leads to significant reductions in thermal conductivities, thus invalidating their applicability to functional devices. In this work, we report on high in-plane thermal conductivities of 3.05, 3.75, and 6 µm thick aluminum nitride (AlN) films measured via steady-state thermoreflectance. At room temperature, the AlN films possess an in-plane thermal conductivity of ∼260 ± 40 W m-1 K-1, one of the highest reported to date for any thin film material of equivalent thickness. At low temperatures, the in-plane thermal conductivities of the AlN films surpass even those of diamond thin films. Phonon-phonon scattering drives the in-plane thermal transport of these AlN thin films, leading to an increase in thermal conductivity as temperature decreases. This is opposite of what is observed in traditional high thermal conductivity thin films, where boundaries and defects that arise from film growth cause a thermal conductivity reduction with decreasing temperature. This study provides insight into the interplay among boundary, defect, and phonon-phonon scattering that drives the high in-plane thermal conductivity of the AlN thin films and demonstrates that these AlN films are promising materials for heat spreaders in electronic devices.

5.
ACS Appl Mater Interfaces ; 12(26): 29443-29450, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491824

RESUMEN

Aluminum nitride (AlN) has garnered much attention due to its intrinsically high thermal conductivity. However, engineering thin films of AlN with these high thermal conductivities can be challenging due to vacancies and defects that can form during the synthesis. In this work, we report on the cross-plane thermal conductivity of ultra-high-purity single-crystal AlN films with different thicknesses (∼3-22 µm) via time-domain thermoreflectance (TDTR) and steady-state thermoreflectance (SSTR) from 80 to 500 K. At room temperature, we report a thermal conductivity of ∼320 ± 42 W m-1 K-1, surpassing the values of prior measurements on AlN thin films and one of the highest cross-plane thermal conductivities of any material for films with equivalent thicknesses, surpassed only by diamond. By conducting first-principles calculations, we show that the thermal conductivity measurements on our thin films in the 250-500 K temperature range agree well with the predicted values for the bulk thermal conductivity of pure single-crystal AlN. Thus, our results demonstrate the viability of high-quality AlN films as promising candidates for the high-thermal-conductivity layers in high-power microelectronic devices. Our results also provide insight into the intrinsic thermal conductivity of thin films and the nature of phonon-boundary scattering in single-crystal epitaxially grown AlN thin films. The measured thermal conductivities in high-quality AlN thin films are found to be constant and similar to bulk AlN, regardless of the thermal penetration depth, film thickness, or laser spot size, even when these characteristic length scales are less than the mean free paths of a considerable portion of thermal phonons. Collectively, our data suggest that the intrinsic thermal conductivity of thin films with thicknesses less than the thermal phonon mean free paths is the same as bulk so long as the thermal conductivity of the film is sampled independent of the film/substrate interface.

6.
J Chem Phys ; 150(18): 184701, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091900

RESUMEN

Slow relaxation of highly excited (hot) charge carriers can be used to increase efficiencies of solar cells and related devices as it allows hot carriers to be extracted and utilized before they relax and lose energy. Using a combination of real-time density functional theory and nonadiabatic molecular dynamics, we demonstrate that nonradiative relaxation of excited holes in an Au film slows down 30-fold as holes relax across the energy range -2 to -1.5 eV below the Fermi level. This effect arises due to sharp decreases in density of states (DOS) and reduced hole-phonon coupling in this energy range. Furthermore, to improve adhesion, a thin film of transition metal, such as Ti, is often inserted between the noble metal layer and its underlying substrate; we demonstrate that this adhesion layer completely eliminates the hot-hole bottleneck because it significantly, 7-fold per atom, increases the DOS in the critical energy region between -1.5 eV and the Fermi level, and because Ti atoms are 4-times lighter than Au atoms, high frequency phonons are introduced and increase the charge-phonon coupling. The detailed ab initio analysis of the charge-phonon scattering emphasizes the nonequilibrium nature of the relaxation processes and provides important insights into the energy flow in metal films. The study suggests that energy losses to heat can be greatly reduced by judicious selection of adhesion layers that do not involve light atoms and have relatively low DOS in the relevant energy range. Inversely, narrow Ti adhesion layers assist heat dissipation needed in electronics applications.

7.
Rev Sci Instrum ; 90(2): 024905, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30831683

RESUMEN

We demonstrate a steady-state thermoreflectance-based optical pump-probe technique to measure the thermal conductivity of materials using a continuous wave laser heat source. The technique works in principle by inducing a steady-state temperature rise in a material via long enough exposure to heating from a pump laser. A probe beam is then used to detect the resulting change in reflectance, which is proportional to the change in temperature at the sample surface. Increasing the power of the pump beam to induce larger temperature rises, Fourier's law is used to determine the thermal conductivity. We show that this technique is capable of measuring the thermal conductivity of a wide array of materials having thermal conductivities ranging from 1 to >2000 W m-1 K-1, in excellent agreement with literature values.

8.
Adv Mater ; 30(51): e1805004, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30368943

RESUMEN

Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.

9.
Adv Mater ; 30(44): e1804097, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30222218

RESUMEN

The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased. In this work, experimental evidence is provided that interfacial defects can enhance the TBC across interfaces through the emergence of unique high-frequency vibrational modes that arise from atomic mass defects at the interface with relatively small masses. Ultrahigh TBC is demonstrated at amorphous SiOC:H/SiC:H interfaces, approaching 1 GW m-2 K-1 and are further increased through the introduction of nitrogen defects. The fact that disordered interfaces can exhibit such high conductances, which can be further increased with additional defects, offers a unique direction to manipulate heat transfer across materials with high densities of interfaces by controlling and enhancing interfacial thermal transport.

10.
Rev Sci Instrum ; 88(5): 054903, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571466

RESUMEN

Damage in the form of dewetting and delamination of thin films is a major concern in applications requiring micro- or nano-fabrication. In non-contact nanoscale characterization, optical interrogation must be kept to energies below damage thresholds in order to conduct measurements such as pump-probe spectroscopy. In this study, we show that the thermoreflectance of thin films can indicate the degree of film damage induced by a modulated optical heating source. By adjusting the absorbed power of the pump heating event, we identify the characteristics of the change in the thermoreflectance signal when leading up to and exceeding the damage threshold of gold films of varying thicknesses on glass substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...