Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Acta Haematol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934131

RESUMEN

INTRODUCTION CMML is a rare neoplasm with overlapping myelodysplastic and myeloproliferative features whose only potential cure is allogeneic hematopoietic cell transplantation (allo-HCT). METHODS This retrospective study examined 27 CMML patients with high-risk clinical features who underwent first allo-HCT at our institution between 2004 and 2022. RESULTS 19 patients were diagnosed with the proliferative subtype (CMML-MPN), and 8 with the dysplastic subtype (CMML-MDS). Median OS was 15 months post-HCT (95% CI: 5-71); OS at 1, 3, and 5 years was 52%, 35%, and 35%, respectively. Compared to those with CMML-MPN, patients with CMML-MDS had longer OS (median, 8.6 vs 0.9 years; P=0.025), RFS (4.4 vs 0.5 years; P=0.021), and GVHD-free, relapse-free survival (GRFS, 9.4 vs 3.4 months; P=0.033) as well as lower 1-year NRM (13% vs 47%; P=0.043), with the statistical significance of this CMML subtype effect maintained in multivariable models. High-risk cytogenetics were associated with shorter GRFS in the univariable (median, 3.1 vs 6.2 months; P=0.013) and multivariable (HR=4.88; P=0.006) settings. CONCLUSIONS Patients who underwent transplant for CMML-MDS experienced substantially better outcomes than those transplanted for CMML-MPN. Future studies are needed for transplantation optimization in CMML, especially CMML-MPN.

2.
BMC Bioinformatics ; 25(1): 142, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566005

RESUMEN

BACKGROUND: The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data. RESULTS: We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations. CONCLUSIONS: CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.


Asunto(s)
Leucocitos Mononucleares , Programas Informáticos , Humanos , Análisis de Secuencia de ARN/métodos , Flujo de Trabajo , Citometría de Flujo , Proteínas de la Membrana , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos
3.
iScience ; 27(3): 109124, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455978

RESUMEN

Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detection of aberrant transcription factor activity is important to understand disease pathogenesis. We have developed Priori, a method to predict transcription factor activity from RNA sequencing data. Priori has two key advantages over existing methods. First, Priori utilizes literature-supported regulatory information to identify transcription factor-target gene relationships. It then applies linear models to determine the impact of transcription factor regulation on the expression of its target genes. Second, results from a third-party benchmarking pipeline reveals that Priori detects aberrant activity from 124 single-gene perturbation experiments with higher sensitivity and specificity than 11 other methods. We applied Priori and other top-performing methods to predict transcription factor activity from two large primary patient datasets. Our work demonstrates that Priori uniquely discovered significant determinants of survival in breast cancer and identified mediators of drug response in leukemia.

4.
JCO Oncol Pract ; 19(12): 1111-1115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851937

RESUMEN

A multitude of blood-based multicancer early detection (MCED) tests assessing cancer-related alterations in circulating genomic analytes and other associated signatures are currently being developed with the potential to disrupt current single-organ screening paradigms. Pathways for clinical implementation of these novel MCED tests have not been delineated, particularly for the patients with signal positive results requiring additional confirmatory testing. In this overview, we highlight early results from prospective clinical studies testing the efficacy of genomic MCED tests in cohorts of patients without known cancer diagnoses. Additionally, we discuss a proposed professional expansion of the oncology practice relating to the diagnostic workup of individuals found to have an MCED signal positive for cancer. As MCED blood tests have the potential to dramatically upend current cancer screening paradigms and downstream cancer therapy, it is imperative for oncologists to be aware of important clinical studies and the multitude of unanswered questions. The current gaps in the clinical implication of these tests may serve as a meaningful and rewarding expansion of oncology practice.


Asunto(s)
Neoplasias , Oncólogos , Humanos , Estudios Prospectivos , Neoplasias/diagnóstico , Neoplasias/genética , Oncología Médica , Detección Precoz del Cáncer
5.
Front Oncol ; 13: 1217153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746298

RESUMEN

Although the majority of patients with chronic myeloid leukemia (CML) enjoy an excellent prognosis tyrosine kinase inhibitor (TKI) therapy, resistance remains a significant clinical problem. Resistance can arise from mutations in the kinase domain of ABL preventing drug binding, or due to ill-defined kinase-independent mechanisms. In this case report, we describe the case of a 27-year-old woman with a long-standing history of chronic phase (CP) CML who developed kinase-independent resistance with mutations in ASXL1 and RUNX1. As a consequence of uncontrolled disease, she progressed to a chronic myelomonocytic leukemia-like (CMML) accelerated phase (AP) disease with the acquisition of a mutation in IDH1. This disease progression was associated with the development of an inflammatory serositis, a phenomenon that has been described in CMML but not in AP-CML. This case presents key features of kinase-independent resistance with insight into potential mechanisms, highlights management challenges, and describes a novel systemic inflammatory response that occurred in this patient upon disease progression.

6.
Nat Biotechnol ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537502

RESUMEN

Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

7.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37502923

RESUMEN

DNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap). Sufficient off-target coverage further enables the production of near-complete methylomes for individual cell types. We characterize sciMET-cap on human PBMCs and brain (middle frontal gyrus).

9.
Mol Cancer Res ; 21(7): 631-647, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36976323

RESUMEN

Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood superenhancer, suppressing superenhancer accessibility as well as MYC expression and activity. The drug combination simultaneously results in the accumulation of repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these findings in 72 primary AML samples with the nearly every sample demonstrating synergistic responses to the drug combination. Collectively, these studies reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD (internal tandem duplication) AML. IMPLICATIONS: This work establishes the synergistic efficacy of combined FLT3 and LSD1 inhibition in FLT3-ITD AML by disrupting STAT5 and GFI1 binding at the MYC blood-specific superenhancer complex.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Apoptosis , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/metabolismo
10.
Leukemia ; 37(2): 478-487, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526735

RESUMEN

Mutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion. In granulocyte progenitors, Asxl1 deletion leads to hyperactivation of MYC and a quantitative decrease in neutrophil production. This loss of granulocyte production was not accompanied by significant changes in the landscape of covalent histone modifications. However, Asxl1 deletion results in a decrease in RNAPII promoter-proximal pausing in granulocyte progenitors, indicative of a global increase in productive transcription. These results suggest that ASXL1 inhibits productive transcription in granulocyte progenitors, identifying a new role for this epigenetic regulator in myeloid development.


Asunto(s)
Síndromes Mielodisplásicos , ARN Polimerasa II , Proteínas Represoras , Animales , Humanos , Ratones , Células Precursoras de Granulocitos/patología , Mutación , Síndromes Mielodisplásicos/genética , Proteínas Represoras/genética , ARN Polimerasa II/genética , Factores de Transcripción/genética
11.
Genome Biol ; 23(1): 144, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788238

RESUMEN

Genome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. We compare the performance of GoPeaks against commonly used peak calling algorithms to detect histone modifications that display a range of peak profiles and are frequently used in epigenetic studies. We find that GoPeaks robustly detects genome-wide histone modifications and, notably, identifies a substantial number of H3K27ac peaks with improved sensitivity compared to other standard algorithms.


Asunto(s)
Código de Histonas , Procesamiento Proteico-Postraduccional , Inmunoprecipitación de Cromatina/métodos , Genoma , Análisis de Secuencia de ADN/métodos
13.
Cancer Cell ; 40(8): 850-864.e9, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35868306

RESUMEN

Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.


Asunto(s)
Leucemia Mieloide Aguda , Diferenciación Celular , Estudios de Cohortes , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Receptores de Superficie Celular/genética , Transcriptoma
15.
Leukemia ; 36(7): 1781-1793, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35590033

RESUMEN

Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.


Asunto(s)
Histona Demetilasas , Leucemia Mieloide Aguda , Ciclo Celular , Línea Celular Tumoral , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
16.
Blood ; 140(6): 644-658, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482940

RESUMEN

Colony stimulating factor 3 receptor (CSF3R) mutations lead to JAK pathway activation and are the molecular hallmark of chronic neutrophilic leukemia (CNL). Approximately half of patients with CNL also have mutations in SET binding protein 1 (SETBP1). In this study, we developed models of SETBP1-mutated leukemia to understand the role that SETBP1 plays in CNL. SETBP1 mutations promote self-renewal of CSF3R-mutated hematopoietic progenitors in vitro and prevent cells from undergoing terminal differentiation. In vivo, SETBP1 mutations accelerate leukemia progression, leading to the rapid development of hepatosplenomegaly and granulocytosis. Through transcriptomic and epigenomic profiling, we found that SETBP1 enhances progenitor-associated programs, most strongly upregulating Myc and Myc target genes. This upregulation of Myc can be reversed by LSD1 inhibitors. In summary, we found that SETBP1 mutations promote aggressive hematopoietic cell expansion when expressed with mutated CSF3R through the upregulation of Myc-associated gene expression programs.


Asunto(s)
Leucemia Neutrofílica Crónica , Leucemia , Trastornos Mieloproliferativos , Neoplasias , Proteínas Portadoras/genética , Humanos , Leucemia Neutrofílica Crónica/genética , Mutación , Trastornos Mieloproliferativos/genética , Proteínas Nucleares/genética , Receptores del Factor Estimulante de Colonias/genética
18.
Brain Behav Immun ; 97: 102-118, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245812

RESUMEN

Lipocalin 2 (LCN2) is a pleiotropic molecule that is induced in the central nervous system (CNS) in several acute and chronic pathologies. The acute induction of LCN2 evolved as a beneficial process, aimed at combating bacterial infection through the sequestration of iron from pathogens, while the role of LCN2 during chronic, non-infectious disease remains unclear, and recent studies suggest that LCN2 is neurotoxic. However, whether LCN2 is sufficient to induce behavioral and cognitive alterations remains unclear. In this paper, we sought to address the role of cerebral LCN2 on cognition in both acute and chronic settings. We demonstrate that LCN2 is robustly induced in the CNS during both acute and chronic inflammatory conditions, including LPS-based sepsis and cancer cachexia. In vivo, LPS challenge results in a global induction of LCN2 in the central nervous system, while cancer cachexia results in a distribution specific to the vasculature. Similar to these in vivo observations, in vitro modeling demonstrated that both glia and cerebral endothelium produce and secrete LCN2 when challenged with LPS, while only cerebral endothelium secrete LCN2 when challenged with cancer-conditioned medium. Chronic, but not short-term, cerebral LCN2 exposure resulted in reduced hippocampal neuron staining intensity, an increase in newborn neurons, microglial activation, and increased CNS immune cell infiltration, while gene set analyses suggested these effects were mediated through melanocortin-4 receptor independent mechanisms. RNA sequencing analyses of primary hippocampal neurons revealed a distinct transcriptome associated with prolonged LCN2 exposure, and ontology analysis was suggestive of altered neurite growth and abnormal spatial learning. Indeed, LCN2-treated hippocampal neurons display blunted neurite processes, and mice exposed to prolonged cerebral LCN2 levels experienced a reduction in spatial reference memory as indicated by Y-maze assessment. These findings implicate LCN2 as a pathologic mediator of cognitive decline in the setting of chronic disease.


Asunto(s)
Disfunción Cognitiva , Neuronas , Animales , Hipocampo/metabolismo , Lipocalina 2 , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo
19.
Leukemia ; 35(12): 3594-3599, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34002029

RESUMEN

Mutations in SET-binding protein 1 (SETBP1) are associated with poor outcomes in myeloid leukemias. In the Ras-driven leukemia, juvenile myelomonocytic leukemia, SETBP1 mutations are enriched in relapsed disease. While some mechanisms for SETBP1-driven oncogenesis have been established, it remains unclear how SETBP1 specifically modulates the biology of Ras-driven leukemias. In this study, we found that when co-expressed with Ras pathway mutations, SETBP1 promoted oncogenic transformation of murine bone marrow in vitro and aggressive myeloid leukemia in vivo. We demonstrate that SETBP1 enhances the NRAS gene expression signature, driving upregulation of mitogen-activated protein kinase (MAPK) signaling and downregulation of differentiation pathways. SETBP1 also enhances NRAS-driven phosphorylation of MAPK proteins. Cells expressing NRAS and SETBP1 are sensitive to inhibitors of the MAPK pathway, and treatment with the MEK inhibitor trametinib conferred a survival benefit in a mouse model of NRAS/SETBP1-mutant disease. Our data demonstrate that despite driving enhanced MAPK signaling, SETBP1-mutant cells remain susceptible to trametinib in vitro and in vivo, providing encouraging preclinical data for the use of trametinib in SETBP1-mutant disease.


Asunto(s)
Médula Ósea/metabolismo , Proteínas Portadoras/metabolismo , GTP Fosfohidrolasas/metabolismo , Leucemia Mielomonocítica Juvenil/patología , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Animales , Médula Ósea/efectos de los fármacos , Proteínas Portadoras/genética , Células Cultivadas , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/genética , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal
20.
Cell ; 184(5): 1142-1155, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667368

RESUMEN

The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients. Approaches to understand the function and circuitry of cancer genes provide complementary approaches to elucidate both oncogene and non-oncogene dependencies. Emerging work indicates that the diversity of therapeutic targets engendered by non-oncogene dependencies is much larger than the list of recurrently mutated genes. Here we describe a framework for this expanded list of cancer targets, providing novel opportunities for clinical translation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Genómica , Humanos , Neoplasias/genética , Neoplasias/patología , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...