Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
PLoS Comput Biol ; 18(2): e1009891, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176028

RESUMEN

Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 - 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.


Asunto(s)
Hipocampo , Células Piramidales , Potenciales de Acción/fisiología , Región CA1 Hipocampal , Región CA3 Hipocampal , Dendritas/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Sinapsis
3.
Cogn Neurodyn ; 16(1): 117-133, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35116084

RESUMEN

Human brain imaging has revealed that stimulus-induced activity does generally not simply add to the pre-stimulus activity, but rather builds in a non-additive way on this activity. Here we investigate this subject at the single neuron level and address the question whether and to what extent a strong form of non-additivity where activity drops post-cue is present in different areas of monkey cortex, including prefrontal and agranular frontal areas, during a perceptual decision making task involving action and tactic selection. Specifically we analyze spike train data recorded in vivo from the posterior dorsomedial prefrontal cortex (pmPFC), the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA). For each neuron, we compute the ratio of the trial-averaged pre-stimulus spike count to the trial-averaged post-stimulus count. We also perform the ratio and averaging procedures in reverse order. We find that the statistics of these quantities behave differently across areas. pmPFC involved in tactic selection shows stronger non-additivity compared to the two other areas which more generically just increase their firing rate pos-stimulus. pmPFC behaved more similarly to pre-SMA, a likely consequence of the reciprocal connections between these areas. The trial-averaged ratio statistic was reproduced by a surrogate inhomogeneous Poisson process in which the measured trial-averaged firing rate for a given neuron is used as its time-dependent rate. Principal component analysis (PCA) of the trial-averaged firing rates of neuronal ensembles further reveals area-specific time courses of response to the stimulus, including latency to peak neural response, for the typical population activity. Our work demonstrates subtle forms of area-specific non-additivity based on the fine variability structure of pre- and post-stimulus spiking activity on the single neuron level. It also reveals significant differences between areas for PCA and surrogate analysis, complementing previous observations of regional differences based solely on post-stimulus responses. Moreover, we observe regional differences in non-additivity which are related to the monkey's successful tactic selection and decision making. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11571-021-09702-0.

4.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868586

RESUMEN

Jellyfish nerve nets provide insight into the origins of nervous systems, as both their taxonomic position and their evolutionary age imply that jellyfish resemble some of the earliest neuron-bearing, actively-swimming animals. Here, we develop the first neuronal network model for the nerve nets of jellyfish. Specifically, we focus on the moon jelly Aurelia aurita and the control of its energy-efficient swimming motion. The proposed single neuron model disentangles the contributions of different currents to a spike. The network model identifies factors ensuring non-pathological activity and suggests an optimization for the transmission of signals. After modeling the jellyfish's muscle system and its bell in a hydrodynamic environment, we explore the swimming elicited by neural activity. We find that different delays between nerve net activations lead to well-controlled, differently directed movements. Our model bridges the scales from single neurons to behavior, allowing for a comprehensive understanding of jellyfish neural control of locomotion.


Asunto(s)
Locomoción/fisiología , Neuronas/fisiología , Escifozoos/fisiología , Animales , Hidrodinámica , Modelos Teóricos , Red Nerviosa , Neuronas/citología , Escifozoos/anatomía & histología , Natación/fisiología , Sinapsis
5.
Phys Rev E ; 99(3-1): 032402, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30999498

RESUMEN

We study temporal correlations of interspike intervals, quantified by the network-averaged serial correlation coefficient (SCC), in networks of both current- and conductance-based purely inhibitory integrate-and-fire neurons. Numerical simulations reveal transitions to negative SCCs at intermediate values of bias current drive and network size. As bias drive and network size are increased past these values, the SCC returns to zero. The SCC is maximally negative at an intermediate value of the network oscillation strength. The dependence of the SCC on two canonical schemes for synaptic connectivity is studied, and it is shown that the results occur robustly in both schemes. For conductance-based synapses, the SCC becomes negative at the onset of both a fast and slow coherent network oscillation. We then show by means of offline simulations using prerecorded network activity that a neuron's SCC is highly sensitive to its number of presynaptic inputs. Finally, we devise a noise-reduced diffusion approximation for current-based networks that accounts for the observed temporal correlation transitions.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Neuronas/fisiología , Animales , Simulación por Computador , Redes Neurales de la Computación , Sinapsis/fisiología , Factores de Tiempo
6.
Phys Rev E ; 95(5-1): 052127, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28618562

RESUMEN

The theoretical description of nonrenewal stochastic systems is a challenge. Analytical results are often not available or can be obtained only under strong conditions, limiting their applicability. Also, numerical results have mostly been obtained by ad hoc Monte Carlo simulations, which are usually computationally expensive when a high degree of accuracy is needed. To gain quantitative insight into these systems under general conditions, we here introduce a numerical iterated first-passage time approach based on solving the time-dependent Fokker-Planck equation (FPE) to describe the statistics of nonrenewal stochastic systems. We illustrate the approach using spike-triggered neuronal adaptation in the leaky and perfect integrate-and-fire model, respectively. The transition to stationarity of first-passage time moments and their sequential correlations occur on a nontrivial time scale that depends on all system parameters. Surprisingly this is so for both single exponential and scale-free power-law adaptation. The method works beyond the small noise and time-scale separation approximations. It shows excellent agreement with direct Monte Carlo simulations, which allow for the computation of transient and stationary distributions. We compare different methods to compute the evolution of the moments and serial correlation coefficients (SCCs) and discuss the challenge of reliably computing the SCCs, which we find to be very sensitive to numerical inaccuracies for both the leaky and perfect integrate-and-fire models. In conclusion, our methods provide a general picture of nonrenewal dynamics in a wide range of stochastic systems exhibiting short- and long-range correlations.

7.
Phys Rev E ; 95(1-1): 012114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208500

RESUMEN

First-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common hurdles in first-passage-time calculations.

8.
Artículo en Inglés | MEDLINE | ID: mdl-26066193

RESUMEN

We consider a leaky integrate-and-fire neuron with deterministic subthreshold dynamics and a firing threshold that evolves as an Ornstein-Uhlenbeck process. The formulation of this minimal model is motivated by the experimentally observed widespread variation of neural firing thresholds. We show numerically that the mean first-passage time can depend nonmonotonically on the noise amplitude. For sufficiently large values of the correlation time of the stochastic threshold the mean first-passage time is maximal for nonvanishing noise. We provide an explanation for this effect by analytically transforming the original model into a first-passage-time problem for Brownian motion. This transformation also allows for a perturbative calculation of the first-passage-time histograms. In turn this provides quantitative insights into the mechanisms that lead to the nonmonotonic behavior of the mean first-passage time. The perturbation expansion is in excellent agreement with direct numerical simulations. The approach developed here can be applied to any deterministic subthreshold dynamics and any Gauss-Markov processes for the firing threshold. This opens up the possibility to incorporate biophysically detailed components into the subthreshold dynamics, rendering our approach a powerful framework that sits between traditional integrate-and-fire models and complex mechanistic descriptions of neural dynamics.


Asunto(s)
Modelos Neurológicos , Neuronas/citología , Procesos Estocásticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA