Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 9(2): 211041, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154790

RESUMEN

Deployment of wind energy is proposed as a mechanism to reduce greenhouse gas emissions. Yet, wind energy and large birds, notably soaring raptors, both depend on suitable wind conditions. Conflicts in airspace use may thus arise due to the risks of collisions of birds with the blades of wind turbines. Using locations of GPS-tagged bearded vultures, a rare scavenging raptor reintroduced into the Alps, we built a spatially explicit model to predict potential areas of conflict with future wind turbine deployments in the Swiss Alps. We modelled the probability of bearded vultures flying within or below the rotor-swept zone of wind turbines as a function of wind and environmental conditions, including food supply. Seventy-four per cent of the GPS positions were collected below 200 m above ground level, i.e. where collisions could occur if wind turbines were present. Flight activity at potential risk of collision is concentrated on south-exposed mountainsides, especially in areas where ibex carcasses have a high occurrence probability, with critical areas covering vast expanses throughout the Swiss Alps. Our model provides a spatially explicit decision tool that will guide authorities and energy companies for planning the deployment of wind farms in a proactive manner to reduce risk to emblematic Alpine wildlife.

2.
Ecol Evol ; 10(20): 11488-11506, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144979

RESUMEN

Balancing model complexity is a key challenge of modern computational ecology, particularly so since the spread of machine learning algorithms. Species distribution models are often implemented using a wide variety of machine learning algorithms that can be fine-tuned to achieve the best model prediction while avoiding overfitting. We have released SDMtune, a new R package that aims to facilitate training, tuning, and evaluation of species distribution models in a unified framework. The main innovations of this package are its functions to perform data-driven variable selection, and a novel genetic algorithm to tune model hyperparameters. Real-time and interactive charts are displayed during the execution of several functions to help users understand the effect of removing a variable or varying model hyperparameters on model performance. SDMtune supports three different metrics to evaluate model performance: the area under the receiver operating characteristic curve, the true skill statistic, and Akaike's information criterion corrected for small sample sizes. It implements four statistical methods: artificial neural networks, boosted regression trees, maximum entropy modeling, and random forest. Moreover, it includes functions to display the outputs and create a final report. SDMtune therefore represents a new, unified and user-friendly framework for the still-growing field of species distribution modeling.

3.
J Environ Manage ; 264: 110401, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217309

RESUMEN

Retaining trees during harvesting to conserve biodiversity is becoming increasingly common in forestry. To assess, select and monitor these habitat trees, ecologists and practitioners often use Tree-related Microhabitats (TreMs), which are assumed to represent the abundance and diversity of environmental resources for a wide range of forest-dwelling taxa. However, the relationship between TreMs and forest organisms is not fully understood. In this context, we attempted to identify and quantify the links between TreMs and three groups of forest organisms: insects, bats, and birds. Specifically, we tested whether species abundance is influenced by TreM abundance, either as direct predictor or as mediator of environmental predictors. We collected data in 86 temperate, 1-ha mixed forest plots and employed a hierarchical generalized mixed model to assess the influence of seven environmental predictors (aspect, number and height of standing dead trees, cover of herb and shrub layer, volume of lying deadwood, and terrain ruggedness index (TRI)) on the abundance of TreMs (15 groups) on potential habitat trees, insects (10 orders), bats (5 acoustic groups) and birds (29 species) as a function of seven environmental predictors: aspect, number and height of standing dead trees, cover of herb and shrub layer, volume of lying deadwood, and terrain ruggedness index (TRI). This allowed us to generate a correlation matrix with potential links between abundances of TreMs and co-occurring forest organisms. These correlations and the environmental predictors were tested in a structural equation model (SEM) to disentangle and quantify the effects of the environment from direct effects of TreMs on forest organisms. Four TreM groups showed correlations > |0.30| with forest organisms, in particular with insects and bats. Rot holes and concavities were directly linked with three insect groups and two bat groups. Their effect was smaller than effects of environmental predictors, except for the pairs "rot holes - Sternorrhyncha" and "rot holes - bats" of the Pipistrellus group. In addition, TreMs had indirect effects on forest organisms through mediating the effects of environmental predictors. We found significant associations between two out of fifteen TreM groups and five out of 44 forest organism groups. These results indicate that TreM abundance on potential habitat trees is not suited as a general indicator of the species abundance across broad taxonomic groups but possibly for specific target groups with proven links.


Asunto(s)
Aves , Árboles , Animales , Biodiversidad , Ecosistema , Agricultura Forestal , Insectos
4.
Ecol Evol ; 10(3): 1489-1509, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076529

RESUMEN

Retention forestry, which retains a portion of the original stand at the time of harvesting to maintain continuity of structural and compositional diversity, has been originally developed to mitigate the impacts of clear-cutting. Retention of habitat trees and deadwood has since become common practice also in continuous-cover forests of Central Europe. While the use of retention in these forests is plausible, the evidence base for its application is lacking, trade-offs have not been quantified, it is not clear what support it receives from forest owners and other stakeholders and how it is best integrated into forest management practices. The Research Training Group ConFoBi (Conservation of Forest Biodiversity in Multiple-use Landscapes of Central Europe) focusses on the effectiveness of retention forestry, combining ecological studies on forest biodiversity with social and economic studies of biodiversity conservation across multiple spatial scales. The aim of ConFoBi is to assess whether and how structural retention measures are appropriate for the conservation of forest biodiversity in uneven-aged and selectively harvested continuous-cover forests of temperate Europe. The study design is based on a pool of 135 plots (1 ha) distributed along gradients of forest connectivity and structure. The main objectives are (a) to investigate the effects of structural elements and landscape context on multiple taxa, including different trophic and functional groups, to evaluate the effectiveness of retention practices for biodiversity conservation; (b) to analyze how forest biodiversity conservation is perceived and practiced, and what costs and benefits it creates; and (c) to identify how biodiversity conservation can be effectively integrated in multi-functional forest management. ConFoBi will quantify retention levels required across the landscape, as well as the socio-economic prerequisites for their implementation by forest owners and managers. ConFoBi's research results will provide an evidence base for integrating biodiversity conservation into forest management in temperate forests.

5.
Glob Chang Biol ; 26(3): 1212-1224, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31804736

RESUMEN

Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole-nesting species with differing sensitivities to climate that show a range of well-understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N-mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate-sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.


Asunto(s)
Cambio Climático , Estrigiformes , Animales , Ecosistema , Bosques , Conducta Predatoria
6.
PLoS One ; 13(3): e0192493, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561851

RESUMEN

Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.


Asunto(s)
Algoritmos , Quirópteros , Modelos Biológicos , Energía Renovable , Viento , Animales , Europa (Continente)
7.
Glob Chang Biol ; 24(7): 3236-3253, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29532601

RESUMEN

Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and-ultimately-extinction of cold-adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape-based connectivity metrics. They were derived from graph-theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss Alps and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%-55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter-patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter-patch distance were predicted at the southern and northern edges of the species' Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss Alps. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss Alps may help mitigate the predicted effects of climate change on population connectivity.


Asunto(s)
Distribución Animal , Cambio Climático , Conservación de los Recursos Naturales , Liebres/fisiología , Tundra , Animales , Ecosistema , Modelos Biológicos , Reproducción , Suiza
8.
PLoS One ; 12(5): e0175134, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467429

RESUMEN

The rapid spread and diversification of outdoor recreation can impact on wildlife in various ways, often leading to the avoidance of disturbed habitats. To mitigate human-wildlife conflicts, spatial zonation schemes can be implemented to separate human activities from key wildlife habitats, e.g., by designating undisturbed wildlife refuges or areas with some level of restriction to human recreation and land use. However, mitigation practice rarely considers temporal differences in human-wildlife interactions. We used GPS telemetry data from 15 red deer to study the seasonal (winter vs. summer) and diurnal (day vs. night) variation in recreation effects on habitat use in a study region in south-western Germany where a spatial zonation scheme has been established. Our study aimed to determine if recreation infrastructure and spatial zonation affected red deer habitat use and whether these effects varied daily or seasonally. Recreation infrastructure did not affect home range selection in the study area, but strongly determined habitat use within the home range. The spatial zonation scheme was reflected in both of these two levels of habitat selection, with refuges and core areas being more frequently used than the border zones. Habitat use differed significantly between day and night in both seasons. Both summer and winter recreation trails, and nearby foraging habitats, were avoided during day, whereas a positive association was found during night. We conclude that human recreation has an effect on red deer habitat use, and when designing mitigation measures daily and seasonal variation in human-wildlife interactions should be taken into account. We advocate using spatial zonation in conjunction with temporal restrictions (i.e., banning nocturnal recreation activities) and the creation of suitable foraging habitats away from recreation trails.


Asunto(s)
Ciervos/fisiología , Ecosistema , Recreación , Animales , Humanos
9.
PLoS One ; 11(10): e0164318, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27727325

RESUMEN

In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial allocation of management resources in geographic regions where shrub encroachment represents a major biodiversity conservation issue.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Cruzamiento , Galliformes/crecimiento & desarrollo , Galliformes/fisiología , Suiza
10.
PLoS One ; 9(5): e97718, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24823495

RESUMEN

Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.


Asunto(s)
Adaptación Biológica/fisiología , Distribución Animal , Biodiversidad , Aves/fisiología , Cambio Climático , Ecosistema , Bosques , Animales , Conservación de los Recursos Naturales/métodos , Alemania , Modelos Logísticos , Modelos Biológicos , Especificidad de la Especie , Suiza
11.
Ecol Appl ; 21(3): 955-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639058

RESUMEN

Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.


Asunto(s)
Animales Salvajes , Demografía , Galliformes/fisiología , Modelos Biológicos , Deportes de Nieve , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Humanos , Estaciones del Año
13.
Mol Ecol ; 19(17): 3664-78, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20723058

RESUMEN

Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area-wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter-individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within-population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.


Asunto(s)
Ecosistema , Galliformes/genética , Genética de Población , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Femenino , Flujo Génico , Alemania , Masculino , Análisis de Regresión , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...