Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Phys Med ; 108: 102571, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36989977

RESUMEN

PURPOSE: The Eiger 2X CdTe 1 M-W (Dectris ltd, Baden, Switzerland) single photon counting detector was characterized for imaging applications at the biomedical beamline ID17 of the European Synchrotron Radiation Facility. METHODS: Linearity, Modulation Transfer Function, Noise Power Spectrum and Detective Quantum Efficiency were measured as a function of photon energy and flux in the range 26-80 keV. RESULTS: The linearity was confirmed in the flux range specified by Dectris and a detection efficiency higher than 60 % was measured for energies up to 80 keV. The spatial resolution was inferred from the Modulation Transfer Function and was found to be compatible with the pixel size of the detector (75 µm), except at energies just above the K-edge of Cd and Te where it reached 150 µm. The study of the Noise Power Spectrum showed a time-dependency in the response of the sensor, which is mitigated at low photon fluxes (<2⨯108 ph mm-2 s-1). CONCLUSIONS: This work was the first characterization of the Eiger 2X CdTe 1 M-W for imaging applications with monochromatic synchrotron radiation. The spatial resolution and the quantum efficiency are compatible with low-dose imaging applications.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Cadmio/química , Telurio/química , Fotones
2.
Heliyon ; 9(2): e13081, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36718155

RESUMEN

The pancreatic islet is a highly structured micro-organ that produces insulin in response to rising blood glucose. Here we develop a label-free and automatic imaging approach to visualize the islets in situ in diabetic rodents by the synchrotron radiation X-ray phase-contrast microtomography (SRµCT) at the ID17 station of the European Synchrotron Radiation Facility. The large-size images (3.2 mm × 15.97 mm) were acquired in the pancreas in STZ-treated mice and diabetic GK rats. Each pancreas was dissected by 3000 reconstructed images. The image datasets were further analysed by a self-developed deep learning method, AA-Net. All islets in the pancreas were segmented and visualized by the three-dimension (3D) reconstruction. After quantifying the volumes of the islets, we found that the number of larger islets (=>1500 µm3) was reduced by 2-fold (wt 1004 ± 94 vs GK 419 ± 122, P < 0.001) in chronically developed diabetic GK rat, while in STZ-treated diabetic mouse the large islets were decreased by half (189 ± 33 vs 90 ± 29, P < 0.001) compared to the untreated mice. Our study provides a label-free tool for detecting and quantifying pancreatic islets in situ. It implies the possibility of monitoring the state of pancreatic islets in vivo diabetes without labelling.

3.
J Neurotrauma ; 40(9-10): 939-951, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36074949

RESUMEN

Following spinal cord injury (SCI) the degree of functional (motor, autonomous, or sensory) loss correlates with the severity of nervous tissue damage. An imaging technique able to capture non-invasively and simultaneously the complex mechanisms of neuronal loss, vascular damage, and peri-lesional tissue reorganization is currently lacking in experimental SCI studies. Synchrotron X-ray phase-contrast tomography (SXPCT) has emerged as a non-destructive three-dimensional (3D) neuroimaging technique with high contrast and spatial resolution. In this framework, we developed a multi-modal approach combining SXPCT, histology and correlative methods to study neurovascular architecture in normal and spinal level C4-contused mouse spinal cords (C57BL/6J mice, age 2-3 months). The evolution of SCI lesion was imaged at the cell resolution level during the acute (30 min) and subacute (7 day) phases. Spared motor neurons (MNs) were segmented and quantified in different volumes localized at and away from the epicenter. SXPCT was able to capture neuronal loss and blood-brain barrier breakdown following SCI. Three-dimensional quantification based on SXPCT acquisitions showed no additional MN loss between 30 min and 7 days post-SCI. In addition, the analysis of hemorrhagic (at 30 min) and lesion (at 7 days) volumes revealed a high similarity in size, suggesting no extension of tissue degeneration between early and later time-points. Moreover, glial scar borders were unevenly distributed, with rostral edges being the most extended. In conclusion, SXPCT capability to image at high resolution cellular changes in 3D enables the understanding of the relationship between hemorrhagic events and nervous structure damage in SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Ratones , Animales , Rayos X , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/patología , Médula Espinal/metabolismo , Tomografía
4.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35852558

RESUMEN

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Receptores de Glutamato Metabotrópico , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Calcio , Senescencia Celular , Hierro , Ratones Transgénicos , Neuroimagen , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Rayos X
5.
Sci Rep ; 12(1): 5056, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322152

RESUMEN

The magnitude and distribution of strain imposed on the peripheral airspaces by mechanical ventilation at the microscopic level and the consequent deformations are unknown despite their importance for understanding the mechanisms occurring at the onset of ventilator-induced lung injury. Here a 4-Dimensional (3D + time) image acquisition and processing technique is developed to assess pulmonary acinar biomechanics at microscopic resolution. Synchrotron radiation phase contrast CT with an isotropic voxel size of 6 µm3 is applied in live anesthetized rats under controlled mechanical ventilation. Video animations of regional acinar and vascular strain are acquired in vivo. Maps of strain distribution due to positive-pressure breaths and cardiovascular activity in lung acini and blood vessels are derived based on CT images. Regional strain within the lung peripheral airspaces takes average values of 0.09 ± 0.02. Fitting the expression S = kVn, to the changes in peripheral airspace area (S) and volume (V) during a positive pressure breath yields an exponent n = 0.82 ± 0.03, suggesting predominant alveolar expansion rather than ductal expansion or alveolar recruitment. We conclude that this methodology can be used to assess acinar conformational changes during positive pressure breaths in intact peripheral lung airspaces.


Asunto(s)
Sincrotrones , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Fenómenos Biomecánicos , Pulmón/diagnóstico por imagen , Microscopía de Contraste de Fase , Ratas
6.
Front Physiol ; 13: 825433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350681

RESUMEN

Synchrotron radiation offers unique properties of coherence, utilized in phase-contrast imaging, and high flux as well as a wide energy spectrum which allow the selection of very narrow energy bands of radiation, used in K-edge subtraction imaging (KES) imaging. These properties extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and to map regional lung ventilation, perfusion, inflammation, aerosol particle distribution and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. These techniques have proven to be very useful for revealing the regional differences in both lung structure and function which is crucial for better understanding of disease mechanisms as well as for evaluating treatment in small animal models of lung diseases. Here, synchrotron radiation imaging methods are described and examples of their application to the study of disease mechanisms in preclinical animal models are presented.

7.
Int J Radiat Oncol Biol Phys ; 112(3): 818-830, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678432

RESUMEN

PURPOSE: This study provides the first experimental application of multiscale 3-dimensional (3D) x-ray phase contrast imaging computed tomography (XPCI-CT) virtual histology for the inspection and quantitative assessment of the late-stage effects of radio-induced lesions on lungs in a small animal model. METHODS AND MATERIALS: Healthy male Fischer rats were irradiated with x-ray standard broad beams and microbeam radiation therapy, a high-dose rate (14 kGy/s), FLASH spatially fractionated x-ray therapy to avoid beamlet smearing owing to cardiosynchronous movements of the organs during the irradiation. After organ dissection, ex vivo XPCI-CT was applied to all the samples and the results were quantitatively analyzed and correlated to histologic data. RESULTS: XPCI-CT enables the 3D visualization of lung tissues with unprecedented contrast and sensitivity, allowing alveoli, vessel, and bronchi hierarchical visualization. XPCI-CT discriminates in 3D radio-induced lesions such as fibrotic scars and Ca/Fe deposits and allows full-organ accurate quantification of the fibrotic tissue within the irradiated organs. The radiation-induced fibrotic tissue content is less than 10% of the analyzed volume for all microbeam radiation therapy-treated organs and reaches 34% in the case of irradiations with 50 Gy using a broad beam. CONCLUSIONS: XPCI-CT is an effective imaging technique able to provide detailed 3D information for the assessment of lung pathology and treatment efficacy in a small animal model.


Asunto(s)
Terapia por Rayos X , Animales , Pulmón/diagnóstico por imagen , Masculino , Ratas , Tomografía Computarizada por Rayos X/métodos , Rayos X
8.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638437

RESUMEN

The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging-Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques.

9.
Front Oncol ; 11: 554668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113554

RESUMEN

Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.

10.
J Biomed Sci ; 28(1): 42, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098949

RESUMEN

BACKGROUND: The evolution of cartilage degeneration is still not fully understood, partly due to its thinness, low radio-opacity and therefore lack of adequately resolving imaging techniques. X-ray phase-contrast imaging (X-PCI) offers increased sensitivity with respect to standard radiography and CT allowing an enhanced visibility of adjoining, low density structures with an almost histological image resolution. This study examined the feasibility of X-PCI for high-resolution (sub-) micrometer analysis of different stages in tissue degeneration of human cartilage samples and compare it to histology and transmission electron microscopy. METHODS: Ten 10%-formalin preserved healthy and moderately degenerated osteochondral samples, post-mortem extracted from human knee joints, were examined using four different X-PCI tomographic set-ups using synchrotron radiation the European Synchrotron Radiation Facility (France) and the Swiss Light Source (Switzerland). Volumetric datasets were acquired with voxel sizes between 0.7 × 0.7 × 0.7 and 0.1 × 0.1 × 0.1 µm3. Data were reconstructed by a filtered back-projection algorithm, post-processed by ImageJ, the WEKA machine learning pixel classification tool and VGStudio max. For correlation, osteochondral samples were processed for histology and transmission electron microscopy. RESULTS: X-PCI provides a three-dimensional visualization of healthy and moderately degenerated cartilage samples down to a (sub-)cellular level with good correlation to histologic and transmission electron microscopy images. X-PCI is able to resolve the three layers and the architectural organization of cartilage including changes in chondrocyte cell morphology, chondrocyte subgroup distribution and (re-)organization as well as its subtle matrix structures. CONCLUSIONS: X-PCI captures comprehensive cartilage tissue transformation in its environment and might serve as a tissue-preserving, staining-free and volumetric virtual histology tool for examining and chronicling cartilage behavior in basic research/laboratory experiments of cartilage disease evolution.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Microscopía de Contraste de Fase/métodos , Osteoartritis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Cartílago Articular/patología , Femenino , Humanos , Masculino , Osteoartritis/etiología , Osteoartritis/patología
11.
Sci Rep ; 11(1): 4236, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608569

RESUMEN

Mechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 µm voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH2O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p = 0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.


Asunto(s)
Microscopía/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico por imagen , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Rayos X , Animales , Biomarcadores , Análisis de Datos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Respiración con Presión Positiva , Conejos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Tomografía Computarizada por Rayos X , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
13.
Cureus ; 13(11): e19317, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35223216

RESUMEN

Conventional radiotherapy is a widely used non-invasive form of treatment for many types of cancer. However, due to a low threshold in the lung for radiation-induced normal tissue damage, it is of less utility in treating lung cancer. For this reason, surgery is the preferred treatment for lung cancer, which has the detriment of being highly invasive. Non-conventional ultra-high dose rate (FLASH) radiotherapy is currently of great interest in the radiotherapy community due to demonstrations of reduced normal tissue toxicity in lung and other anatomy. This study investigates the effects of FLASH microbeam radiotherapy, which in addition to ultra-high dose rate incorporates a spatial segmentation of the radiation field, on the normal lung tissue of rats. With a focus on fibrotic damage, this work demonstrates that FLASH microbeam radiotherapy provides an order of magnitude increase in normal tissue radio-resistance compared to FLASH radiotherapy. This result suggests FLASH microbeam radiotherapy holds promise for much improved non-invasive control of lung cancer.

14.
Radiology ; 298(1): 135-146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107800

RESUMEN

Background Modern high-spatial-resolution radiologic methods enable increasingly detailed volumetric postmortem investigations of human neuroanatomy for diagnostic, research, and educational purposes. Purpose To evaluate the viability of postmortem x-ray phase-contrast micro-CT to provide tissue-conserving, high-spatial-resolution, three-dimensional neuroimaging of the human spinal cord and column by comparing quality of x-ray phase-contrast micro-CT images of nondissected Thiel-embalmed human spines with images of extracted formalin-fixed human spinal cords. Specific focus was placed on assessing the detection of micrometric spinal cord soft-tissue structure and vasculature. Materials and Methods In this study from August 2015 to August 2019, three Thiel-embalmed human spinal column samples, unilaterally perfused with an iodinated vascular contrast agent, and three extracted formalin-fixed spinal cord samples were imaged postmortem at a synchrotron radiation facility. Propagation-based x-ray phase-contrast micro-CT was used with monochromatic 60-keV x-rays and a detector with either 46-µm or 8-µm pixel sizes. A single-distance phase-retrieval algorithm was applied to the acquired CT projection images in advance of filtered back projection CT reconstruction. The influence on image quality of Thiel versus formalin embalming was examined, and images were qualitatively evaluated in terms of the value of their anatomic representations. Results The x-ray phase-contrast micro-CT of Thiel-embalmed samples resulted in soft-tissue contrast within the vertebral canal, despite evident nervous tissue deterioration after Thiel embalming. Gross spinal cord anatomy, spinal meninges, contrast agent-enhanced spinal vasculature, and spinal nerves were all well rendered alongside surrounding vertebral bone structure. The x-ray phase-contrast micro-CT of formalin-fixed boneless cords led to much higher gray versus white matter contrast and to microscale visualization of deep medullary vasculature and neuronal perikarya. Conclusion This work demonstrated the use of x-ray phase-contrast micro-CT for detailed volumetric anatomic visualization of embalmed human spines. The method provided three-dimensional display of bone, nervous tissue, and vasculature at microscale resolutions without exogenous contrast agents. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Medios de Contraste , Imagenología Tridimensional/métodos , Intensificación de Imagen Radiográfica/métodos , Médula Espinal/anatomía & histología , Microtomografía por Rayos X/métodos , Cadáver , Humanos
15.
Sci Rep ; 10(1): 20007, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203975

RESUMEN

We applied transfer learning using Convolutional Neuronal Networks to high resolution X-ray phase contrast computed tomography datasets and tested the potential of the systems to accurately classify Computed Tomography images of different stages of two diseases, i.e. osteoarthritis and liver fibrosis. The purpose is to identify a time-effective and observer-independent methodology to identify pathological conditions. Propagation-based X-ray phase contrast imaging WAS used with polychromatic X-rays to obtain a 3D visualization of 4 human cartilage plugs and 6 rat liver samples with a voxel size of 0.7 × 0.7 × 0.7 µm3 and 2.2 × 2.2 × 2.2 µm3, respectively. Images with a size of 224 × 224 pixels are used to train three pre-trained convolutional neuronal networks for data classification, which are the VGG16, the Inception V3, and the Xception networks. We evaluated the performance of the three systems in terms of classification accuracy and studied the effect of the variation of the number of inputs, training images and of iterations. The VGG16 network provides the highest classification accuracy when the training and the validation-test of the network are performed using data from the same samples for both the cartilage (99.8%) and the liver (95.5%) datasets. The Inception V3 and Xception networks achieve an accuracy of 84.7% (43.1%) and of 72.6% (53.7%), respectively, for the cartilage (liver) images. By using data from different samples for the training and validation-test processes, the Xception network provided the highest test accuracy for the cartilage dataset (75.7%), while for the liver dataset the VGG16 network gave the best results (75.4%). By using convolutional neuronal networks we show that it is possible to classify large datasets of biomedical images in less than 25 min on a 8 CPU processor machine providing a precise, robust, fast and observer-independent method for the discrimination/classification of different stages of osteoarthritis and liver diseases.


Asunto(s)
Cartílago/patología , Hepatopatías/patología , Animales , Aprendizaje Automático , Masculino , Redes Neurales de la Computación , Osteoartritis/patología , Ratas , Ratas Endogámicas Lew , Tomografía Computarizada por Rayos X/métodos , Rayos X
16.
J Synchrotron Radiat ; 27(Pt 5): 1347-1357, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876610

RESUMEN

Recent trends in hard X-ray micro-computed tomography (microCT) aim at increasing both spatial and temporal resolutions. These challenges require intense photon beams. Filtered synchrotron radiation beams, also referred to as `pink beams', which are emitted by wigglers or bending magnets, meet this need, owing to their broad energy range. In this work, the new microCT station installed at the biomedical beamline ID17 of the European Synchrotron is described and an overview of the preliminary results obtained for different biomedical-imaging applications is given. This new instrument expands the capabilities of the beamline towards sub-micrometre voxel size scale and simultaneous multi-resolution imaging. The current setup allows the acquisition of tomographic datasets more than one order of magnitude faster than with a monochromatic beam configuration.


Asunto(s)
Microtomografía por Rayos X/instrumentación , Animales , Diseño de Equipo , Europa (Continente) , Humanos , Imagenología Tridimensional , Técnicas In Vitro , Pulmón/diagnóstico por imagen , Ratones , Fantasmas de Imagen , Médula Espinal/diagnóstico por imagen , Sincrotrones
17.
Opt Express ; 28(8): 11597-11608, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403667

RESUMEN

We present data from an implementation of Edge Illumination (EI) that uses a detector aperture designed for increasing dynamic range, suitable for clinically relevant X-ray energies and demonstrated here using synchrotron radiation. By utilising a sufficiently large crosstalk between pixels, this implementation enables single-scan imaging for phase and absorption, and double-scan for phase, absorption and dark field imaging. The presence of the detector mask enables a direct comparison between conventional EI and beam tracking (BT), which we conduct through Monte Carlo and analytical modelling in the case of a single-scan being used for the retrieval of all three contrasts. In the present case, where the X-ray beam width is comparable to the pixel size, we provide an analysis on best-positioning of the beam on the detector for accurate signal retrieval. Further, we demonstrate an application of this method by distinguishing different concentrations of microbubbles via their dark field signals at high energy using an EI system.

18.
J Neurosci Methods ; 339: 108744, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353471

RESUMEN

BACKGROUND: Dense and unbiased cellular-resolution representations of extended volumetric central nervous system soft-tissue anatomy are difficult to obtain, even in experimental post-mortem settings. Interestingly, X-ray phase-contrast computed tomography (X-PCI-CT), an emerging soft-tissue-sensitive volumetric imaging technique, can provide multiscale organ- to cellular-level morphological visualizations of neuroanatomical structure. NEW METHOD: Here, we tested different nervous-tissue fixation procedures, conventionally used for transmission electron microscopy, to better establish X-PCI-CT-specific sample-preparation protocols. Extracted rat spinal medullas were alternatively fixed with a standard paraformaldehyde-only aldehyde-based protocol, or in combination with glutaraldehyde. Some specimens were additionally post-fixed with osmium tetroxide. Multiscale X-PCI-CT datasets were collected at several synchrotron radiation facilities, using state-of-the-art setups with effective image voxel sizes of 3.03 to 0.33 µm3, and compared to high-field magnetic resonance imaging, histology and vascular fluorescence microscopy data. RESULTS: Multiscale X-PCI-CT of aldehyde-fixed spinal cord specimens resulted in dense histology-like volumetric representations and quantifications of extended deep spinal micro-vascular networks and of intra-medullary cell populations. Osmium post-fixation increased intra-medullary contrast between white and gray-matter tissues, and enhanced delineation of intra-medullary cellular structure, e.g. axon fibers and motor neuron perikarya. COMPARISON WITH EXISTING METHODS: Volumetric X-PCI-CT provides complementary contrast and higher spatial resolution compared to 9.4 T MRI. X-PCI-CT's advantage over planar histology is the volumetric nature of the cellular-level data obtained, using samples much larger than those fit for volumetric vascular fluorescence microscopy. CONCLUSIONS: Deliberately choosing (post-)fixation protocols tailored for optimal nervous-tissue structural preservation is of paramount importance in achieving effective and targeted neuroimaging via the X-PCI-CT technique.


Asunto(s)
Osmio , Intervención Coronaria Percutánea , Aldehídos , Animales , Ratas , Roedores , Médula Espinal/diagnóstico por imagen , Microtomografía por Rayos X , Rayos X
19.
Biomed Opt Express ; 11(4): 2235-2253, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32341880

RESUMEN

A crucial issue in the development of therapies to treat pathologies of the central nervous system is represented by the availability of non-invasive methods to study the three-dimensional morphology of spinal cord, with a resolution able to characterize its complex vascular and neuronal organization. X-ray phase contrast micro-tomography enables a high-quality, 3D visualization of both the vascular and neuronal network simultaneously without the need of contrast agents, destructive sample preparations or sectioning. Until now, high resolution investigations of the post-mortem spinal cord in murine models have mostly been performed in spinal cords removed from the spinal canal. We present here post-mortem phase contrast micro-tomography images reconstructed using advanced computational tools to obtain high-resolution and high-contrast 3D images of the fixed spinal cord without removing the bones and preserving the richness of micro-details available when measuring exposed spinal cords. We believe that it represents a significant step toward the in-vivo application.

20.
PLoS One ; 15(3): e0230578, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218605

RESUMEN

Despite the diversity in fish auditory structures, it remains elusive how otolith morphology and swim bladder-inner ear (= otophysic) connections affect otolith motion and inner ear stimulation. A recent study visualized sound-induced otolith motion; but tank acoustics revealed a complex mixture of sound pressure and particle motion. To separate sound pressure and sound-induced particle motion, we constructed a transparent standing wave tube-like tank equipped with an inertial shaker at each end while using X-ray phase contrast imaging. Driving the shakers in phase resulted in maximised sound pressure at the tank centre, whereas particle motion was maximised when shakers were driven out of phase (180°). We studied the effects of two types of otophysic connections-i.e. the Weberian apparatus (Carassius auratus) and anterior swim bladder extensions contacting the inner ears (Etroplus canarensis)-on otolith motion when fish were subjected to a 200 Hz stimulus. Saccular otolith motion was more pronounced when the swim bladder walls oscillated under the maximised sound pressure condition. The otolith motion patterns mainly matched the orientation patterns of ciliary bundles on the sensory epithelia. Our setup enabled the characterization of the interplay between the auditory structures and provided first experimental evidence of how different types of otophysic connections affect otolith motion.


Asunto(s)
Sacos Aéreos/fisiología , Cíclidos/fisiología , Carpa Dorada/fisiología , Membrana Otolítica/fisiología , Estimulación Acústica , Sacos Aéreos/anatomía & histología , Sacos Aéreos/diagnóstico por imagen , Animales , Umbral Auditivo , Cíclidos/anatomía & histología , Carpa Dorada/anatomía & histología , Audición/fisiología , Procesamiento de Imagen Asistido por Computador , Membrana Otolítica/anatomía & histología , Membrana Otolítica/diagnóstico por imagen , Natación , Tomografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...