Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191872

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Ratones , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Ciervos/metabolismo , Suelo
2.
Sci Rep ; 13(1): 20170, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978207

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Priones/análisis , Enfermedad Debilitante Crónica/diagnóstico , Heces/química
3.
mSphere ; 8(5): e0027223, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37800903

RESUMEN

Chronic wasting disease (CWD) prions cause fatal neuropathies in farmed and free-ranging cervids. The deposition of prions in natural and humanmade environmental components has been implicated as a major mechanism mediating CWD spread in wild and captive populations. Prions can be deposited in the environment through excreta, tissues, and carcasses from pre-clinical and clinical animals. Furthermore, burial of CWD-positive animals may reduce but not completely mitigate prion spread from carcasses into the surrounding environment. Here, we analyzed exhumed, decaying deer carcasses for the presence of CWD prions. By analyzing tongue tissues through the protein misfolding cyclic amplification (PMCA) technique, we were able to identify seven out of 95 exhumed white-tailed deer carcasses as CWD prions carriers. Confirmatory analyses were performed using the real-time quaking-induced conversion (RT-QuIC) technique. In addition, we evaluated the potential contamination of the pens that housed these animals by swabbing feeders and waterers. PMCA analyses of swabs confirmed CWD contamination on farming equipment. This work demonstrates the usefulness of PMCA to detect CWD prions in a variety of contexts, including exhumed/decaying tissues. In addition, this is the first report demonstrating swabbing coupled with PMCA as a method for the detection of prion seeding activity on naturally exposed surfaces. Considering that this study was focused on a single site, further studies should confirm whether prion amplification assays are useful to identify CWD prions not only in animals but also in the environment that contains them. IMPORTANCE Environmental contamination is thought to be a major player in the spread of chronic wasting disease (CWD), a fatal prion disease affecting a wide variety of cervid species. At present, there are no officially approved methods allowing for the detection of prion infectivity in environmental components. Importantly, animal as well as anthropogenic activities are thought to contribute to prion environmental contamination. Here, we detected CWD prions in exhumed white-tailed deer carcasses by using the protein misfolding cyclic amplification (PMCA) assay. In addition, we identified CWD prions in feeders used within the infected facility. These results highlight the potential role of PMCA in identifying prion infectivity in a variety of scenarios, ranging from decaying tissues to farming equipment.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/metabolismo , Bioensayo
4.
Sci Rep ; 11(1): 18385, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526562

RESUMEN

Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.


Asunto(s)
Bioensayo/métodos , Biomarcadores , Feto/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/metabolismo , Animales , Femenino , Embarazo , Proteínas Priónicas , Priones/química , Enfermedad Debilitante Crónica/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...