Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 13(4): 3839-3846, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30855942

RESUMEN

We present a combined experimental and theoretical study of ligand-ligand cooperativity during X-type carboxylate-to-carboxylate ligand exchange reactions on PbS quantum dot surfaces. We find that the ligand dipole moment (varied through changing the substituents on the benzene ring of cinnamic acid derivatives) impacts the ligand-exchange isotherms; in particular, ligands with large electron withdrawing character result in a sharper transition from an oleate-dominated ligand shell to a cinnamate-dominated ligand shell. We developed a two-dimensional lattice model to simulate the ligand-exchange isotherms that accounts for the difference in ligand binding energy as well as ligand-ligand cooperativity. Our model shows that ligands with larger ligand-ligand coupling energy exhibit sharper isotherms indicating an order-disorder phase transition. Finally, we developed an anisotropic Janus ligand shell by taking advantage of the ligand-ligand cooperative ligand exchanges. We monitored the Janus ligand shell using 19F nuclear magnetic resonance, showing that when the ligand-ligand coupling energy falls within the order region of the phase diagram, Janus ligand shells can be constructed.

2.
J Phys Chem Lett ; 9(12): 3425-3433, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29857647

RESUMEN

We studied the optical absorption enhancement in colloidal suspensions of PbS quantum dots (QD) upon ligand exchange from oleate to a series of cinnamate ligands. By combining experiments and ab initio simulations, we elucidate physical parameters that govern the optical absorption enhancement. We find that, within the cinnamate/PbS QD system, the optical absorption enhancement scales linearly with the electronic gap of the ligand, indicating that the ligand/QD coupling occurs equally efficient between the QD and ligand HOMO and their respective LUMO levels. Disruption of the conjugation that connects the aromatic ring and its substituents to the QD core causes a reduction of the electronic coupling. Our results further support the notion that the ligand/QD complex should be considered as a distinct chemical system with emergent behavior rather than a QD core with ligands whose sole purpose is to passivate surface dangling bonds and prevent agglomeration.

3.
Nat Commun ; 8: 15257, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508866

RESUMEN

Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

4.
J Chem Theory Comput ; 13(7): 3318-3325, 2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-28537727

RESUMEN

We analyze the performance of the recently proposed screened exchange constant functional (SX) ( Brawand et al. Phys. Rev. X 2016 , 6 , 041002 ) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yields improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (αSX) are determined self-consistently, and those where αSX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G0W0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.

5.
J Chem Theory Comput ; 13(6): 2581-2590, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28426221

RESUMEN

The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the dependence of results on numerical parameters and the choice of localization potentials. In addition, we compare CDFT results with those of other commonly used methods for simulating charge transport between nanoscale building blocks. We show that some of these methods give unphysical results for thermally disordered configurations, while CDFT proves to be a viable and robust approach.

6.
Nanoscale ; 7(8): 3737-44, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25644225

RESUMEN

Exponential blinking statistics was reported in oxidized Si nanoparticles and the switching mechanism was attributed to the activation and deactivation of unidentified nonradiative recombination centers. Using ab initio calculations we predicted that Si dangling bonds at the surface of oxidized nanoparticles introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. Our results are based on first principles calculations of charge transition levels, single particle energies, and radiative and nonradiative lifetimes of dangling bond defects at the surface of oxidized silicon nanoparticles under stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA