Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 32(17): e2000018, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32167204

RESUMEN

Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain-like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo-one-dimensional materials. Here, the novel phase transition in anisotropic Nb(1- x ) Tix S3 alloys is demonstrated for the first time. Results show that Nb(1- x ) Tix S3 can be fully alloyed across the entire composition range from triclinic-phase NbS3 to monoclinic-phase TiS3 . Surprisingly, incorporation of a small concentration of Ti (x ≈ 0.05-0.18) into NbS3 host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle-resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb(1- x ) Tix S3 as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two-dimensional superconductivity, electronics, photonics, and information technologies.

2.
RSC Adv ; 10(63): 38227-38232, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517551

RESUMEN

We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe2 nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI2 and H2Se precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe2) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...