Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 195: 108069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565359

RESUMEN

Microbial lipases play a pivotal role in a wide range of biotechnological processes and in the human skin microbiome. However, their evolution remains poorly understood. Accessing the evolutionary process of lipases could contribute to future applications in health and biotechnology. We investigated genetic events associated with the evolutionary trajectory of the microbial family LIP lipases. Using phylogenetic analysis, we identified two distinct horizontal gene transfer (HGT) events from Bacteria to Fungi. Further analysis of human cutaneous mycobiome members such as the lipophilic Malassezia yeasts and CUG-Ser-1 clade (including Candida sp. and other microorganisms associated with cutaneous mycobiota) revealed recent evolutionary processes, with multiple gene duplication events. The Lid region of fungal lipases, crucial for substrate interaction, exhibits varying degrees of conservation among different groups. Our findings suggest the adaptability of the fungal LIP family in various genetic and metabolic contexts and its potential role in niche exploration.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Humanos , Filogenia , Bacterias/genética , Duplicación de Gen
2.
PLoS One ; 15(6): e0231542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497034

RESUMEN

Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.


Asunto(s)
Modelos Moleculares , Factor de Crecimiento Nervioso/metabolismo , Mutación Puntual , Receptor trkA/genética , Receptor trkA/metabolismo , Transducción de Señal , Movimiento , Factor de Crecimiento Nervioso/química , Unión Proteica , Conformación Proteica , Receptor trkA/química
3.
PLoS One ; 14(2): e0212629, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30802241

RESUMEN

Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs). In this context, these enzymes are of biotechnological interest for conversion of lignin-derived FA into high value chemicals. In this study, we describe the first structural characterization of a prokaryotic Fcs, named FCS1, isolated from a lignin-degrading microbial consortium. The FCS1 optimum pH and temperature were 9 and 37°C, respectively, with Km of 0.12 mM and Vmax of 36.82 U/mg. The circular dichroism spectra indicated a notable secondary structure stability at alkaline pH values and high temperatures. This secondary structure stability corroborates the activity data, which remains high until pH 9. The Small Angle X-Ray Scattering analyses resulted on the tertiary/quaternary structure and the low-resolution envelope in solution of FCS1, which was modeled as a homodimer using the hyperthermophilic nucleoside diphosphate-forming acetyl-CoA synthetase from Candidatus Korachaeum cryptofilum. This study contributes to the field of research by establishing the first biophysical and structural characterization for Fcs, and our data may be used for comparison against novel enzymes of this class that to be studied in the future.


Asunto(s)
Archaea , Proteínas Arqueales , Coenzima A Ligasas , Lignina/química , Metagenoma , Microbiología del Suelo , Archaea/enzimología , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Benzaldehídos/química , Benzaldehídos/metabolismo , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Dominios Proteicos , Suelo
4.
Eur Biophys J ; 47(5): 583-590, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29546436

RESUMEN

There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer ß-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in ß-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas PrPC/química , Proteínas PrPSc/química , Agregado de Proteínas , Humanos , Concentración de Iones de Hidrógeno , Conformación Proteica en Lámina beta , Pliegue de Proteína
5.
J Mol Model ; 22(9): 196, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27488102

RESUMEN

Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of µ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from µ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.


Asunto(s)
Miniproteínas Nodales de Cistina/química , Modelos Moleculares , Venenos de Araña/química , Arañas/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína
6.
PLoS One ; 11(6): e0157162, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258022

RESUMEN

Alpha solenoid proteins play a key role in regulating the classical nuclear import pathway, recognizing a target protein and transporting it into the nucleus. Importin-α (Impα) is the solenoid responsible for cargo protein recognition, and it has been extensively studied by X-ray crystallography to understand the binding specificity. To comprehend the main motions of Impα and to extend the information about the critical interactions during carrier-cargo recognition, we surveyed different conformational states based on molecular dynamics (MD) and normal mode (NM) analyses. Our model of study was a crystallographic structure of Impα complexed with the classical nuclear localization sequence (cNLS) from nucleoplasmin (Npl), which was submitted to multiple 100 ns of MD simulations. Representative conformations were selected for calculating the 87 lowest frequencies NMs of vibration, and a displacement approach was applied along each NM. Based on geometric criteria, using the radius of curvature and inter-repeat angles as the reference metrics, the main motions of Impα were described. Moreover, we determined the salt bridges, hydrogen bonds and hydrophobic interactions in the Impα-NplNLS interface. Our results show the bending and twisting motions participating in the recognition of nuclear proteins, allowing the accommodation and adjustment of a classical bipartite NLS sequence. The essential contacts for the nuclear import were also described and were mostly in agreement with previous studies, suggesting that the residues in the cNLS linker region establish important contacts with Impα adjusting the cNLS backbone. The MD simulations combined with NM analysis can be applied to the Impα-NLS system to help understand interactions between Impα and cNLSs and the analysis of non-classic NLSs.


Asunto(s)
Nucleoplasminas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas/fisiología , alfa Carioferinas/metabolismo
7.
Eur Biophys J ; 45(3): 279-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820562

RESUMEN

Thioredoxins are multifunctional oxidoreductase proteins implicated in the antioxidant cellular apparatus and oxidative stress. They are involved in several pathologies and are promising anticancer targets. Identification of noncatalytic binding sites is of great interest for designing new allosteric inhibitors of thioredoxin. In a recent work, we predicted normal mode motions of human thioredoxin 1 and identified two major putative hydrophobic binding sites. In this work we investigated noncovalent interactions of human thioredoxin 1 with three phenotiazinic drugs acting as prooxidant compounds by using molecular docking and circular dichroism spectrometry to probe ligand binding into the previously predicted allosteric hydrophobic pockets. Our in silico and CD spectrometry experiments suggested one preferred allosteric binding site involving helix 3 and adopting the best druggable conformation identified by NMA. The CD spectra showed binding of thioridazine into thioredoxin 1 and suggested partial helix unfolding, which most probably concerns helix 3. Taken together, these data support the strategy to design thioredoxin inhibitors targeting a druggable allosteric binding site.


Asunto(s)
Sitio Alostérico , Fenotiazinas/farmacología , Tiorredoxinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Fenotiazinas/química , Unión Proteica , Tiorredoxinas/química
8.
J Struct Biol ; 184(2): 293-300, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24036282

RESUMEN

The Thioredoxin (Trx) system plays important roles in several diseases (e.g. cancer, viral infections, cardiovascular and neurodegenerative diseases). Therefore, there is a therapeutic interest in the design of modulators of this system. In this work, we used normal mode analysis to identify putative binding site regions for Human Trx1 that arise from global motions. We identified three possible inhibitor's binding regions that corroborate previous experimental findings. We show that intrinsic motions of the protein are related to the exposure of hydrophobic regions and non-active site cysteines that could constitute new binding sites for inhibitors.


Asunto(s)
Tiorredoxinas/química , Regulación Alostérica , Dominio Catalítico , Descubrimiento de Drogas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Bibliotecas de Moléculas Pequeñas , Propiedades de Superficie , Termodinámica , Tiorredoxinas/antagonistas & inhibidores
9.
J Mol Evol ; 59(1): 20-30, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15383904

RESUMEN

RNase L inhibitors (RLIs) correspond to a group of soluble proteins from the large ATP binding cassette (ABC) family of proteins. Structurally, RLIs have an N-terminal Fe-S domain and two nucleotide binding domains. Orthologous RLI sequences with more than 48% identity have been found from Archea to Eukaryota, but have not as yet been identified in Eubacteria. Some organisms, like Arabidopsis thaliana and human, have paralogous genes with differential expression patterns, the function of which remains to be determined. Expression of Arabidopsis RLI2 was slightly increased in transgenic plants showing RNA interference, suggesting a role in this pathway.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Chaperoninas/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas/genética , Interferencia de ARN , Transportadoras de Casetes de Unión a ATP/metabolismo , Aciltransferasas , Análisis de Varianza , Arabidopsis/genética , Arabidopsis/metabolismo , Chaperoninas/metabolismo , Análisis por Conglomerados , Biología Computacional , Cartilla de ADN , Bases de Datos Genéticas , Componentes del Gen , Modelos Moleculares , Plantas Modificadas Genéticamente , Conformación Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...