Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Biomed Pharmacother ; 173: 116345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442670

RESUMEN

Antagonists of the A2B adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A2BAR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (Ki < 100 nM) and outstanding selectivity for A2BAR. From these, five molecules corresponding to the new benzothiazole scaffold were below the Ki < 10 nM threshold, in addition to a novel dual A2A/A2B antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A2BAR. Two A2BAR selective antagonists and the dual A2AAR/A2BAR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A2BAR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A2BAR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A2AAR antagonism in the context of immune checkpoint inhibition.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Antagonistas de Receptores Purinérgicos P1 , Receptor de Adenosina A2B/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Relación Estructura-Actividad , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
2.
SLAS Discov ; 29(3): 100149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492994

RESUMEN

The purpose of the protocol reported in this work is the solubility profiling of large chemical libraries using nephelometry. This technique allows the qualitative classification of compounds as highly, moderately, or poorly water-soluble. The described methodology is not intended to yield quantitative solubility values of the studied compounds but can be used as a primary solubility assessment of large chemical libraries, to guide hit prioritization after High Throughput Screening (HTS) campaigns.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Solubilidad , Agua , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Agua/química , Nefelometría y Turbidimetría/métodos
3.
ACS Chem Neurosci ; 15(3): 608-616, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38241462

RESUMEN

The introduction of arylmethyl substituents on the amine nitrogen atom of phenethylamines and tryptamines often results in profound increases in their affinity and functional activity at 5-HT2 serotonin receptors. To probe the sensitivity of this effect to substantially larger N-substituents, ten derivatives of the well-characterized psychedelic phenethylamine 2C-B were prepared by appending different dibenzo[b,d]furylmethyl (DBFM) moieties to the basic nitrogen. The DBFM group attached to the amino group through its 1-, -2-, or 3-position decreased affinity and agonist activity at the 5-HT2A/2C receptors. Substitution through the 4-position usually favored affinity for all three 5-HT2 receptor subtypes with compound 5 exhibiting 10- and 40-fold higher affinities at the 5-HT2A and 5-HT2C receptors, respectively, but less than fourfold selectivity among the three receptor subtypes. Nevertheless, all were relatively weak partial 5-HT2AR agonists, mostly in the low micromolar range, but full or nearly full agonists at the 5-HT2C subtype as determined in a calcium mobilization assay. Molecular docking simulations suggested that the dibenzofuryl portion dives more deeply into the orthosteric binding site of the 5-HT2A than the 5-HT2C receptor, interacting with the Trp3366.48 toggle switch associated with its activation, while the phenylamine moiety lies close to the extracellular side of the receptor. In conclusion, a very bulky N-substituent on a phenethylamine 5-HT2 receptor agonist is tolerated and may increase affinity if its orientation is appropriate. However, the Gq protein-mediated potencies are generally low, with low efficacy (relative to 5-HT) at the 5-HT2A receptor, somewhat higher efficacy at the 5-HT2B subtype, and full or nearly full efficacy at the 5-HT2C subtype.


Asunto(s)
Alucinógenos , Serotonina , Agonistas del Receptor de Serotonina 5-HT2 , Receptor de Serotonina 5-HT2A , Simulación del Acoplamiento Molecular , Fenetilaminas , Nitrógeno , Receptor de Serotonina 5-HT2C
4.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138600

RESUMEN

The identification of new modulators for Cannabinoid Receptors (CBRs) has garnered significant attention in drug discovery over recent years, owing to their manifold pathophysiological implications. In the context of hit identification, the availability of robust and sensitive high-throughput screening assays is essential to enhance the likelihood of success. In this study, we present the development and validation of a Tag-lite® binding assay designed for screening hCB1/hCB2 binding, employing a dual fluorescent ligand, CELT-335. Representative ligands for CBRs, exhibiting diverse affinity and functional profiles, were utilized as reference compounds to validate the robustness and efficiency of the newly developed Tag-lite® binding assay protocol. The homogeneous format, coupled with the sensitivity and optimal performance of the fluorescent ligand CELT-335, establishes this assay as a viable and reliable method for screening in hit and lead identification campaigns.


Asunto(s)
Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Transferencia Resonante de Energía de Fluorescencia/métodos , Unión Proteica , Receptores de Cannabinoides , Colorantes
5.
ACS Med Chem Lett ; 14(12): 1656-1663, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116429

RESUMEN

This work describes the synthesis and pharmacological and toxicological evaluation of melanostatin (MIF-1) bioconjugates with amantadine (Am) via a peptide linkage. The data from the functional assays at human dopamine D2 receptors (hD2R) showed that bioconjugates 1 (EC50 = 26.39 ± 3.37 nM) and 2 (EC50 = 17.82 ± 4.24 nM) promote a 3.3- and 4.9-fold increase of dopamine potency, respectively, at 0.01 nM, with no effect on the efficacy (Emax = 100%). In this assay, MIF-1 was only active at the highest concentration tested (EC50 = 23.64 ± 6.73 nM, at 1 nM). Cytotoxicity assays in differentiated SH-SY5Y cells showed that both MIF-1 (94.09 ± 5.75%, p < 0.05) and carbamate derivative 2 (89.73 ± 4.95%, p < 0.0001) exhibited mild but statistical significant toxicity (assessed through the MTT reduction assay) at 200 µM, while conjugate 1 was found nontoxic at this concentration.

7.
Andes Pediatr ; 94(2): 246-253, 2023 Apr.
Artículo en Español | MEDLINE | ID: mdl-37358119

RESUMEN

Streptococcus pneumoniae (also known as pneumococcus) is part of the natural bacterial flora of the nasal and pharyngeal mucosa, colonizes mainly the nasopharynx, and causes this carriage to precede pneumococcal disease, thus becoming the main source of propagation among people, especially in children. Since 1983, when the first 23-component anti-pneumococcal vaccine was authorized, different conjugated vaccines have been developed according to the circulating serotypes that cause invasive pneumococcal diseases (IPD), reducing the incidence and mortality of these diseases considerably. In November 2021, a group of experts held a virtual meeting to update and analyze the impact that pneumococcal vaccines have generated on the countries' public health, especially during the COVID-19 pandemic. The recommendations that emerged included the need to look for alternatives in serotype-independent vaccines after the introduction of pneumococcal conjugate vaccines (PCV) in the national immunization schedules, as well as to strengthen the surveillance of serotypes, focusing on those not included in the current vaccines. The objective of this report is to communicate the conclusions of the group of experts that in November 2021 analyzed the impact of pneumococcal vaccines on public health in the countries, in order to generate recommendations applicable in Latin America.


Asunto(s)
COVID-19 , Pediatría , Infecciones Neumocócicas , Humanos , Niño , Vacunas Conjugadas , Pandemias , Salud Pública , Portador Sano/epidemiología , Portador Sano/microbiología , COVID-19/epidemiología , COVID-19/prevención & control , Streptococcus pneumoniae , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/uso terapéutico
8.
Biomed Pharmacother ; 164: 114934, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37236027

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) constitute the largest and most defiant group of abuse designer drugs. These new psychoactive substances (NPS), developed as unregulated alternatives to cannabis, have potent cannabimimetic effects and their use is usually associated with episodes of psychosis, seizures, dependence, organ toxicity and death. Due to their ever-changing structure, very limited or nil structural, pharmacological, and toxicological information is available to the scientific community and the law enforcement offices. Here we report the synthesis and pharmacological evaluation (binding and functional) of the largest and most diverse collection of enantiopure SCRAs published to date. Our results revealed novel SCRAs that could be (or may currently be) used as illegal psychoactive substances. We also report, for the first time, the cannabimimetic data of 32 novel SCRAs containing an (R) configuration at the stereogenic center. The systematic pharmacological profiling of the library enabled the identification of emerging Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) trends, the detection of ligands exhibiting incipient cannabinoid receptor type 2 (CB2R) subtype selectivity and highlights the significant neurotoxicity of representative SCRAs on mouse primary neuronal cells. Several of the new emerging SCRAs are currently expected to have a rather limited potential for harm, as the evaluation of their pharmacological profiles revealed lower potencies and/or efficacies. Conceived as a resource to foster collaborative investigation of the physiological effects of SCRAs, the library obtained can contribute to addressing the challenge posed by recreational designer drugs.


Asunto(s)
Cannabis , Drogas de Diseño , Animales , Ratones , Agonistas de Receptores de Cannabinoides/farmacología , Drogas de Diseño/toxicidad , Relación Estructura-Actividad , Ligandos
9.
Bioorg Med Chem ; 84: 117256, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003157

RESUMEN

A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 µM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 µM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Humanos , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Serotonina , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Ligandos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
10.
Front Mol Biosci ; 10: 1119157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006609

RESUMEN

Dopamine receptors are G-protein-coupled receptors that are connected to severe neurological disorders. The development of new ligands targeting these receptors enables gaining a deeper insight into the receptor functioning, including binding mechanisms, kinetics and oligomerization. Novel fluorescent probes allow the development of more efficient, cheaper, reliable and scalable high-throughput screening systems, which speeds up the drug development process. In this study, we used a novel Cy3B labelled commercially available fluorescent ligand CELT-419 for developing dopamine D3 receptor-ligand binding assays with fluorescence polarization and quantitative live cell epifluorescence microscopy. The fluorescence anisotropy assay using 384-well plates achieved Z' value of 0.71, which is suitable for high-throughput screening of ligand binding. The assay can also be used to determine the kinetics of both the fluorescent ligand as well as some reference unlabeled ligands. Furthermore, CELT-419 was also used with live HEK293-D3R cells in epifluorescence microscopy imaging for deep-learning-based ligand binding quantification. This makes CELT-419 quite a universal fluorescence probe which has the potential to be also used in more advanced microscopy techniques resulting in more comparable studies.

11.
Arch Toxicol ; 97(4): 1091-1111, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36781432

RESUMEN

There is a widely recognized need to reduce human activity's impact on the environment. Many industries of the leather and textile sector (LTI), being aware of producing a significant amount of residues (Keßler et al. 2021; Liu et al. 2021), are adopting measures to reduce the impact of their processes on the environment, starting with a more comprehensive characterization of the chemical risk associated with the substances commonly used in LTI. The present work contributes to these efforts by compiling and toxicologically annotating the substances used in LTI, supporting a continuous learning strategy for characterizing their chemical safety. This strategy combines data collection from public sources, experimental methods and in silico predictions for characterizing four different endpoints: CMR, ED, PBT, and vPvB. We present the results of a prospective validation exercise in which we confirm that in silico methods can produce reasonably good hazard estimations and fill knowledge gaps in the LTI chemical space. The proposed protocol can speed the process and optimize the use of resources including the lives of experimental animals, contributing to identifying potentially harmful substances and their possible replacement by safer alternatives, thus reducing the environmental footprint and impact on human health.


Asunto(s)
Seguridad Química , Industria Textil , Animales , Humanos , Industrias
12.
Int J Pharm ; 635: 122706, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36803925

RESUMEN

BACKGROUND AND AIMS: Submucosal injection agents are widely used solutions in gastric polyp resection techniques. Currently, many different solutions are used in clinical practice, but most are not authorised for this use or are not biopharmaceutical characterised. The objective of this multidisciplinary work is to test the efficacy of a novel thermosensitive hydrogel designed specifically for this indication. METHODS: A mixture design of various components (Pluronic®, hyaluronic acid and sodium alginate) was carried out to select the combination with optimal properties for this use. Three final thermosensitive hydrogels were selected on which biopharmaceutical characterisation was performed and stability and biocompatibility were analysed. Efficacy in maintaining elevation was tested ex vivo on pig mucosa and in vivo in pigs RESULTS: The mixture design allowed selection of the ideal combinations of agents for the characteristics sought. The thermosensitive hydrogels studied showed high values of hardness and viscosity at 37 °C, maintaining good syringeability. One of them demonstrated superiority in maintaining polyp elevation in the ex vivo assay and non-inferiority in the in vivo assay. CONCLUSION: The thermosensitive hydrogel specifically designed for this use is promising both for its biopharmaceutical characteristics and for its demonstrated efficacy. This study lays the foundation for evaluating the hydrogel in humans.


Asunto(s)
Productos Biológicos , Hidrogeles , Humanos , Animales , Porcinos , Temperatura , Poloxámero , Membrana Mucosa
13.
Eur J Med Chem ; 248: 115109, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657299

RESUMEN

Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.


Asunto(s)
Amidas , Cannabinoides , Humanos , Simulación del Acoplamiento Molecular , Endocannabinoides , Antiinflamatorios , Cannabinoides/farmacología , Receptores de Cannabinoides , Receptor Cannabinoide CB2 , Ligandos
14.
Eur J Med Chem ; 248: 115091, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638711

RESUMEN

Psychiatric and neurological disorders affect millions of people worldwide. Currently available treatments may help to improve symptoms, but they cannot cure the diseases. Therefore, there is an urgent need for potent and safe therapeutic solutions. 8-Amide and 8-carbamatecoumarins were synthetized and evaluated as human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitors. Comparison between both scaffolds has been established, and we hypothesized that the introduction of different substituents can modulate hMAO activity and selectivity. N-(7-Hydroxy-4-methylcoumarin-8-yl)-4-methylbenzamide (9) and ethyl N-(7-hydroxy-4-methylcoumarin-8-yl)carbamate (20) proved to be the most active and selective hMAO-A inhibitors (IC50 = 15.0 nM and IC50 = 22.0 nM, respectively), being compound 9 an irreversible hMAO-A inhibitor twenty-four times more active in vitro than moclobemide, a drug used in the treatment of depression and anxiety. Based on PAMPA assay results, both compounds proved to be good candidates to cross the blood-brain barrier. In addition, these compounds showed non-significant cytotoxicity on neuronal viability assays. Also, the best compound proved to have a t1/2 of 6.84 min, an intrinsic clearance of 195.63 µL min-1 mg-1 protein, and to be chemically stable at pH 3.0, 7.4 and 10.0. Docking studies were performed to better understand the binding affinities and selectivity profiles for both hMAO isoforms. Finally, theoretical drug-like properties calculations corroborate the potential of both scaffolds on the search for new therapeutic solutions for psychiatric disorders as depression.


Asunto(s)
Carbamatos , Inhibidores de la Monoaminooxidasa , Humanos , Inhibidores de la Monoaminooxidasa/química , Carbamatos/farmacología , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Antidepresivos/farmacología , Relación Estructura-Actividad
15.
Heliyon ; 9(1): e13064, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36711286

RESUMEN

Dark tourists experience negative and positive feelings in Holocaust places, suggesting emotional ambivalence. The research question of this study is, "is feeling well-being, as a consequence of dark tourism, a way of banalizing the horror?". The purpose of this study is threefold: to provide an updated systematic literature review (SLR) of dark tourism associated with Holocaust sites and visitors' well-being; to structure the findings into categories that provide a comprehensive overview of the topics; and to identify which topics are not well covered, thus suggesting knowledge gaps. Records to be included should be retrievable articles in peer-reviewed academic journals, books, and book chapters, all focused on the SLR's aims and the research question; other types of publications were outrightly excluded. The search was performed in Web of Science, Scopus, and Google Scholar databases with three keywords and combinations: "dark tourism", "Holocaust", and "well-being". Methodological decisions were based on the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS). This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. During the process, 144 documents were included, of which 126 were journal articles, 8 were books, and 10 were book chapters. The results point out a hierarchical structure with the main category (Dark tourism - Holocaust - Well-being) and three second-order categories (Dark tourism - Holocaust, Dark tourism - Well-being, and Holocaust - Well-being), from which different subcategories emerge: motivations for visiting places and guiding; ambivalent emotional experience that leads to the transformation of the self; and intergenerational trauma. The gaps identified were the trivialization of horror in Holocaust places; dark tourist profile; motivations and constraints behind visiting dark places; Holocaust survivors and their descendants' well-being; how dark tourism associated with the Holocaust positively or negatively impacts well-being. Major limitations included: lack of randomized allocation; lack of standard outcome definitions; and suboptimal comparison groups. Positive and negative impacts on the well-being of the Holocaust dark tourist were sought, as they are associated with the marketing and management, promotion, digital communication, guiding, or storytelling design of such locations.

16.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36706233

RESUMEN

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Asunto(s)
Malaria , Mycobacterium abscessus , Mycobacterium tuberculosis , Parásitos , Tuberculosis , Animales , Humanos , Antituberculosos/farmacología , Parásitos/metabolismo , Proteínas Bacterianas/metabolismo , Tuberculosis/microbiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Lípidos
17.
J Med Chem ; 66(1): 890-912, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517209

RESUMEN

The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.


Asunto(s)
Halogenación , Antagonistas de Receptores Purinérgicos P1 , Cricetinae , Animales , Humanos , Células CHO , Leucocitos Mononucleares/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2B/metabolismo , Ligandos , Halógenos
18.
J Med Chem ; 66(1): 235-250, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542836

RESUMEN

Cannabinoid type 2 receptor (CB2R), belonging to the endocannabinoid system, is overexpressed in pathologies characterized by inflammation, and its activation counteracts inflammatory states. Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of the main endocannabinoid anandamide; thus, the simultaneous CB2R activation and FAAH inhibition may be a synergistic anti-inflammatory strategy. Encouraged by principal component analysis (PCA) data identifying a wide chemical space shared by CB2R and FAAH ligands, we designed a small library of adamantyl-benzamides, as potential dual agents, CB2R agonists, and FAAH inhibitors. The new compounds were tested for their CB2R affinity/selectivity and CB2R and FAAH activity. Derivatives 13, 26, and 27, displaying the best pharmacodynamic profile as CB2R full agonists and FAAH inhibitors, decreased pro-inflammatory and increased anti-inflammatory cytokines production. Molecular docking simulations complemented the experimental findings by providing a molecular rationale behind the observed activities. These multitarget ligands constitute promising anti-inflammatory agents.


Asunto(s)
Cannabinoides , Endocannabinoides/metabolismo , Receptor Cannabinoide CB2 , Simulación del Acoplamiento Molecular , Benzamidas/farmacología , Antiinflamatorios/farmacología , Amidohidrolasas , Agonistas de Receptores de Cannabinoides , Receptor Cannabinoide CB1
19.
Front Immunol ; 14: 1334800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259462

RESUMEN

Background: In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer. Toll-like receptors (TLRs) ligands, such as poly(I:C) or resiquimod (R848) are able to reprogram TAMs towards M1-like antitumor effector cells. The objective of our work has been to develop and evaluate polymeric nanocapsules (NCs) loaded with poly(I:C)+R848, to improve drug stability and systemic toxicity, and evaluate their targeting and therapeutic activity towards TAMs in the TME of solid tumors. Methods: NCs were developed by the solvent displacement and layer-by-layer methodologies and characterized by dynamic light scattering and nanoparticle tracking analysis. Hyaluronic acid (HA) was chemically functionalized with mannose for the coating of the NCs to target TAMs. NCs loaded with TLR ligands were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry, using primary human monocyte-derived macrophages. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry and multispectral immunophenotyping. Results: We have developed polymeric NCs loaded with poly(I:C)+R848. Among a series of 5 lead prototypes, protamine-NCs were selected based on their physicochemical properties (size, charge, stability) and in vitro characterization, showing good biocompatibility on primary macrophages and ability to stimulate their production of T-cell attracting chemokines (CXCL10, CCL5) and to induce M1-like macrophages cytotoxicity towards tumor cells. In mouse tumor models, the intratumoral injection of poly(I:C)+R848-protamine-NCs significantly prevented tumor growth and lung metastasis. In an orthotopic murine lung cancer model, the intravenous administration of poly(I:C)+R848-prot-NCs, coated with an additional layer of HA-mannose to improve TAM-targeting, resulted in good antitumoral efficacy with no apparent systemic toxicity. While no significant alterations were observed in T cell numbers (CD8, CD4 or Treg), TAM-reprogramming in treated mice was confirmed by the relative decrease of interstitial versus alveolar macrophages, having higher CD86 expression but lower CD206 and Arg1 expression in the same cells, in treated mice. Conclusion: Mannose-HA-protamine-NCs loaded with poly(I:C)+R848 successfully reprogram TAMs in vivo, and reduce tumor progression and metastasis spread in mouse tumors.


Asunto(s)
Imidazoles , Neoplasias Pulmonares , Nanocápsulas , Humanos , Animales , Ratones , Macrófagos Asociados a Tumores , Manosa , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Animales de Enfermedad , Protaminas , Microambiente Tumoral
20.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500208

RESUMEN

Nowadays, cancer disease seems to be the second most common cause of death worldwide. Molecular hybridization is a drug design strategy that has provided promising results against multifactorial diseases, including cancer. In this work, two series of phthalazinone-dithiocarbamate hybrids were described, compounds 6-8, which display the dithiocarbamate scaffold at N2, and compounds 9, in which this moiety was placed at C4. The proposed compounds were successfully synthesized via the corresponding aminoalkyl phthalazinone derivatives and using a one-pot reaction with carbon disulfide, anhydrous H3PO4, and different benzyl or propargyl bromides. The antiproliferative effects of the titled compounds were explored against three human cancer cell lines (A2780, NCI-H460, and MCF-7). The preliminary results revealed significant differences in activity and selectivity depending on the dithiocarbamate moiety location. Thus, in general terms, compounds 6-8 displayed better activity against the A-2780 and MCF-7 cell lines, while most of the analogues of the 9 group were selective toward the NCI-H460 cell line. Compounds 6e, 8e, 6g, 9a-b, 9d, and 9g with IC50 values less than 10 µM were the most promising. The drug-likeness and toxicity properties of the novel phthalazinone-dithiocarbamate hybrids were predicted using Swiss-ADME and ProTox web servers, respectively.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad , Estructura Molecular , Proliferación Celular , Antineoplásicos/farmacología , Diseño de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...