Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319152

RESUMEN

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.


Stored within DNA are the instructions cells need to make proteins. In order for proteins to get made, the region of DNA that codes for the desired protein (known as the gene) must first be copied into a molecule called messenger RNA (or mRNA for short). Once transcribed, the mRNA undergoes further modifications, including removing redundant segments known as introns. It then travels to molecular machines that translate its genetic sequence into the building blocks of the protein. Following transcription, some RNAs can fold into catalytic segments known as self-cleaving ribozymes which promote the scission of their own genetic sequence. One such ribozyme resides in the intron of a gene for CPEB3, a protein which adds a poly(A) tail to various mRNAs, including some involved in learning and memory. Although this ribozyme is found in most mammals, its biological role is poorly understood. Previous studies suggested that the ribozyme cleaves itself at the same time as the mRNA for CPEB3 is transcribed. This led Chen et al. to hypothesize that the rate at which these two events occur impacts the amount of CPEB3 produced, resulting in changes in memory and learning. If the ribozyme cleaves quickly, the intron is disrupted and may not be properly removed, leading to less CPEB3 being made. However, if the ribozyme is inhibited, the intron remains intact and is efficiently excised, resulting in higher levels of CPEB3 protein. To test how the ribozyme impacts CPEB3 production, Chen et al. inhibited the enzyme from cutting itself with antisense oligonucleotides (ASOs). The ASOs were applied to in vitro transcription systems, neurons cultured in the laboratory and the brains of living mice in an area called the hippocampus. The in vitro and cell culture experiments led to higher levels of CPEB3 protein and the addition of more poly(A) tails to mRNAs involved in neuron communication. Injection of the ASOs into the brains of mice had the same effect, and also improved their memory and learning. The findings of Chen et al. show a new mechanism for controlling protein production, and suggest that ASOs could be used to increase the levels of CPEB3 and modulate neuronal activity. This is the first time a biological role for a self-cleaving ribozyme in mammals has been identified, and the approach used could be applied to investigate the function of two other self-cleaving ribozymes located in introns in humans.


Asunto(s)
ARN Catalítico , Ratones , Humanos , Animales , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poliadenilación , Memoria a Largo Plazo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
J Neurochem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38339812

RESUMEN

Non-coding RNAs (ncRNAs) are highly plastic RNA molecules that can sequester cellular proteins and other RNAs, serve as transporters of cellular cargo and provide spatiotemporal feedback to the genome. Mounting evidence indicates that ncRNAs are central to biology, and are critical for neuronal development, metabolism and intra- and intercellular communication in the brain. Their plasticity arises from state-dependent dynamic structure states that can be influenced by cell type and subcellular environment, which can subsequently enable the same ncRNA with discrete functions in different contexts. Here, we highlight different classes of brain-enriched ncRNAs, including microRNA, long non-coding RNA and other enigmatic ncRNAs, that are functionally important for both learning and memory and adaptive immunity, and describe how they may promote cross-talk between these two evolutionarily ancient biological systems.

3.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38418220

RESUMEN

The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.


Asunto(s)
G-Cuádruplex , Masculino , Animales , Ratones , Extinción Psicológica , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Miedo , ADN/metabolismo
4.
Nat Commun ; 14(1): 7616, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993455

RESUMEN

Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.


Asunto(s)
Miedo , ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Extinción Psicológica , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo
5.
J Neurosci ; 43(43): 7084-7100, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37669863

RESUMEN

The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.


Asunto(s)
Miedo , ARN Largo no Codificante , Animales , Masculino , Ratones , Extinción Psicológica , Miedo/fisiología , Aprendizaje/fisiología , ARN Largo no Codificante/metabolismo , Sinapsis/metabolismo
6.
bioRxiv ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333407

RESUMEN

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.

7.
Neurobiol Learn Mem ; 203: 107777, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257557

RESUMEN

Circular RNAs (circRNAs) comprise a novel class of regulatory RNAs that are abundant in the brain, particularly within synapses. They are highly stable, dynamically regulated, and display a range of functions, including serving as decoys for microRNAs and proteins and, in some cases, circRNAs also undergo translation. Early work in animal models revealed an association between circRNAs and neurodegenerative and neuropsychiatric disorders; however, little is known about the link between circRNA function and memory. To address this, we examined circRNA in synaptosomes derived from the medial prefrontal cortex of fear extinction-trained male C57BL/6J mice and found 12,837 circRNAs that were enriched at the synapse, including cerebellar degeneration-related protein 1 antisense RNA (Cdr1as). Targeted knockdown of Cdr1as in the neural processes of the infralimbic cortex led to impaired fear extinction memory. These findings highlight the involvement of localised circRNA activity at the synapse in memory formation.


Asunto(s)
MicroARNs , ARN Circular , Ratones , Animales , Masculino , ARN Circular/genética , ARN Circular/metabolismo , ARN sin Sentido , Extinción Psicológica , Miedo , Ratones Endogámicos C57BL , MicroARNs/metabolismo
8.
Cell Rep ; 38(12): 110546, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320727

RESUMEN

Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.


Asunto(s)
Miedo , ARN Largo no Codificante , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Corteza Prefrontal/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
J Neurosci ; 41(5): 873-882, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33446519

RESUMEN

A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.


Asunto(s)
Encéfalo/metabolismo , Cromatina/metabolismo , Epigénesis Genética/fisiología , Salud Mental/tendencias , Red Nerviosa/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Animales , Cromatina/genética , Humanos , Memoria/fisiología , Trastornos Relacionados con Sustancias/genética
10.
RNA Biol ; 18(7): 1025-1036, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33397182

RESUMEN

The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética , Neuronas/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Animales , Encéfalo/citología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Aprendizaje/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Neuronas/citología , Especificidad de Órganos , Estabilidad del ARN , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Sinapsis/metabolismo
11.
Neuroscientist ; 27(5): 473-486, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33034238

RESUMEN

Higher-order organisms possess information processing capabilities that are only made possible by their biological complexity. Emerging evidence indicates a critical role for regulatory RNAs in coordinating many aspects of cellular function that are directly involved in experience-dependent neural plasticity. Here, we focus on a structurally distinct class of RNAs known as circular RNAs. These closed loop, single-stranded RNA molecules are highly stable, enriched in the brain, and functionally active in both healthy and disease conditions. Current evidence implicating this ancient class of RNA as a contributor toward higher-order functions such as cognition and memory is discussed.


Asunto(s)
ARN Circular , ARN , Encéfalo , Humanos
12.
Addict Biol ; 26(3): e12937, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32638524

RESUMEN

Inhalants containing the volatile solvent toluene are misused to induce euphoria or intoxication. Inhalant abuse is most common during adolescence and can result in cognitive impairments during an important maturational period. Despite evidence suggesting that epigenetic modifications may underpin the cognitive effects of inhalants, no studies to date have thoroughly investigated toluene-induced regulation of the transcriptome or discrete epigenetic modifications within the brain. To address this, we investigated effects of adolescent chronic intermittent toluene (CIT) inhalation on gene expression and DNA methylation profiles within the rat medial prefrontal cortex (mPFC), which undergoes maturation throughout adolescence and has been implicated in toluene-induced cognitive deficits. Employing both RNA-seq and genome-wide Methyl CpG Binding Domain (MBD) Ultra-seq analysis, we demonstrate that adolescent CIT inhalation (10 000 ppm for 1 h/day, 3 days/week for 4 weeks) induces both transient and persistent changes to the transcriptome and DNA methylome within the rat mPFC for at least 2 weeks following toluene exposure. We demonstrate for the first time that adolescent CIT exposure results in dynamic regulation of the mPFC transcriptome likely relating to acute inflammatory responses and persistent deficits in synaptic plasticity. These adaptations may contribute to the cognitive deficits associated with chronic toluene exposure and provide novel molecular targets for preventing long-term neurophysiological abnormalities following chronic toluene inhalation.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Corteza Prefrontal/efectos de los fármacos , Tolueno/toxicidad , Transcriptoma/efectos de los fármacos , Administración por Inhalación , Animales , Expresión Génica , Abuso de Inhalantes , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar
13.
Trends Neurosci ; 43(12): 1011-1023, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33041062

RESUMEN

A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.


Asunto(s)
Encéfalo , ARN , Adenosina/análogos & derivados , Humanos , Plasticidad Neuronal , Neuronas
15.
Epilepsy Res ; 166: 106400, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32590288

RESUMEN

OBJECTIVES: This study profiled circulating and hippocampal microRNAs (miRNAs) to identify alterations associated with the risk of epileptogenesis in a mouse temporal lobe epilepsy model. METHODS: Next-generation sequencing was performed to examine the changes in miRNA expression 24 h after pilocarpine-induced status epilepticus (SE) in C57BL/6NCrl mice using both blood and hippocampus samples. Differentially expressed miRNAs were identified from SE animals and matched controls that failed to develop SE after receiving equal doses of pilocarpine (NS animals). Blood and brain miRNA profiles were then compared to identify circulating miRNA alterations reflecting the changes in the brain. RESULTS: We identified 3 miRNAs that were significantly up-regulated and 4 miRNAs that were significantly down-regulated in the blood of SE animals compared with NS animals. When hippocampal miRNAs of SE animals and NS animals were compared, 5 miRNAs were up-regulated and 4 were down-regulated. Of these, miR-434-3p and miR-133a-3p were observed to have greatest changes in both blood and brain of SE animals. SIGNIFICANCE: This study extends current knowledge of changes in miRNAs associated with epileptogenesis by profiling miRNAs in SE and NS animals in an experimental temporal lobe epilepsy model. The study was designed to allow non-specific changes due to the activation of muscarinic cholinergic receptors in peripheral organs by pilocarpine to be ruled out. Significantly altered circulating miRNAs that reflect changes in the brain during epileptogenesis after SE have the potential to be developed as prognostic biomarkers for epileptogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/fisiopatología , Perfilación de la Expresión Génica/métodos , Hipocampo/fisiopatología , MicroARNs/genética , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Pilocarpina/toxicidad
16.
Nat Neurosci ; 23(6): 718-729, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367065

RESUMEN

DNA forms conformational states beyond the right-handed double helix; however, the functional relevance of these noncanonical structures in the brain remains unknown. Here we show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA-editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning, which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state-effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a new mechanism of learning-induced gene regulation that is dependent on proteins that recognize alternate DNA structure states, which are required for memory flexibility.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/fisiología , ADN de Forma Z/fisiología , Extinción Psicológica/fisiología , Edición de ARN/fisiología , Animales , ADN de Forma Z/metabolismo , Miedo , Aprendizaje/fisiología , Ratones , Corteza Prefrontal/metabolismo , ARN Interferente Pequeño/farmacología
17.
Neurobiol Learn Mem ; 161: 202-209, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30965112

RESUMEN

The Piwi pathway is a conserved gene regulatory mechanism comprised of Piwi-like proteins and Piwi-interacting RNAs, which modulates gene expression via RNA interference and through interaction with epigenetic mechanisms. The mammalian Piwi pathway has been defined by its role in transposon control during spermatogenesis; however, despite an increasing number of studies demonstrating its expression in the nervous system, relatively little is known about its function in neurons or potential contribution to behavioural regulation. We have discovered that all three Piwi-like genes are expressed in the adult mouse brain, and that viral-mediated knockdown of the Piwi-like genes Piwil1 and Piwil2 in the dorsal hippocampus leads to enhanced contextual fear memory without affecting generalised anxiety. These results implicate the Piwi pathway in behavioural regulation in the adult mammalian brain, likely through modulation of plasticity-related gene expression.


Asunto(s)
Proteínas Argonautas/metabolismo , Conducta Animal/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Memoria/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Ansiedad/genética , Proteínas Argonautas/genética , Técnicas de Cultivo de Célula , Condicionamiento Operante/fisiología , Epigénesis Genética/fisiología , Expresión Génica/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agitación Psicomotora/genética
18.
Nat Neurosci ; 22(4): 534-544, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778148

RESUMEN

DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction, the DNA modification N6-methyl-2'-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV messenger RNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory.


Asunto(s)
Metilación de ADN , Desoxiadenosinas/metabolismo , Extinción Psicológica/fisiología , Miedo , Regulación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epigénesis Genética , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
19.
Psychopharmacology (Berl) ; 236(1): 133-142, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30506235

RESUMEN

An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Animales , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Trastornos Mentales/genética , Trastornos Mentales/psicología
20.
Psychoneuroendocrinology ; 99: 8-19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172072

RESUMEN

While increasing evidence posits poor decision-making as a central feature of mental disorders, very few studies investigated the effects of early-life stress (ELS) on specific components of reward-related choice behaviors. Risk-taking (RT) involves the exposure to some danger, or negative consequences, in order to achieve a goal-directed behavior. Such behaviors are likely to be preceded by risk-assessment (RA), which is a dynamic cognitive process involving the acquisition of information in potentially dangerous situations. Here, we investigated the effects of being raised in impoverished housing conditions during early life (P2-P9) on RT, RA and dopaminergic and corticotrophinergic gene expression of adolescent male and female mice. Phenotypes were assessed by two protocols: the elevated plus-maze (EPM) and the predator-odor risk-taking (PORT). We found decreased RA in mice exposed to impoverished housing in the absence of a reward (EPM), with a more pronounced effect among females. Moreover, when exposed to a predatory olfactory cue, increased RT was observed in these females in a reward-related task (PORT), as well as decreased HPA axis responsivity. This sex-specific behavioral effect was associated with increased Crfr1 mRNA expression in the medial prefrontal cortex (mPFC) and higher levels of the histone mark H3R2me2s, a histone modification known to be involved in transcriptional activation, within the promoter of the Crfr1 gene. These findings revealed that ELS exposure can impair the acquisition of environmental information in dangerous situations and increase RT in reward-related scenarios among females, with an important role regarding epigenetic regulation of the Crfr1 gene.


Asunto(s)
Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Factores de Edad , Animales , Encéfalo , Dopamina/metabolismo , Epigénesis Genética/genética , Femenino , Regulación de la Expresión Génica/genética , Histonas/genética , Vivienda para Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/fisiología , Recompensa , Medición de Riesgo , Asunción de Riesgos , Factores Sexuales , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...