Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Microbiol ; 14: 1123803, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36922975

RESUMEN

The FUT2 α1,2fucosyltransferase contributes to the synthesis of fucosylated glycans used as attachment factors by several pathogens, including noroviruses and rotaviruses, that can induce life-threatening gastroenteritis in young children. FUT2 genetic polymorphisms impairing fucosylation are strongly associated with resistance to dominant strains of both noroviruses and rotaviruses. Interestingly, the wild-type allele associated with viral gastroenteritis susceptibility inversely appears to be protective against several inflammatory or autoimmune diseases for yet unclear reasons, although a FUT2 influence on microbiota composition has been observed. Here, we studied a cohort of young healthy adults and showed that the wild-type FUT2 allele was associated with the presence of anti-RVA antibodies, either neutralizing antibodies or serum IgA, confirming its association with the risk of RVA gastroenteritis. Strikingly, it was also associated with the frequency of gut microbiota-induced regulatory T cells (Tregs), so-called DP8α Tregs, albeit only in individuals who had anti-RVA neutralizing antibodies or high titers of anti-RVA IgAs. DP8α Tregs specifically recognize the human symbiont Faecalibacterium prausnitzii, which strongly supports their induction by this anti-inflammatory bacterium. The proportion of F. prausnitzii in feces was also associated with the FUT2 wild-type allele. These observations link the FUT2 genotype with the risk of RVA gastroenteritis, the microbiota and microbiota-induced DP8α Treg cells, suggesting that the anti-RVA immune response might involve an induction/expansion of these T lymphocytes later providing a balanced immunological state that confers protection against inflammatory diseases.

3.
Front Microbiol ; 12: 641460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643275

RESUMEN

Human serum contains large amounts of anti-carbohydrate antibodies, some of which may recognize epitopes on viral glycans. Here, we tested the hypothesis that such antibodies may confer protection against COVID-19 so that patients would be preferentially found among people with low amounts of specific anti-carbohydrate antibodies since individual repertoires vary considerably. After selecting glycan epitopes commonly represented in the human anti-carbohydrate antibody repertoire that may also be expressed on viral glycans, plasma levels of the corresponding antibodies were determined by ELISA in 88 SARS-CoV-2 infected individuals, including 13 asymptomatic, and in 82 non-infected controls. We observed that anti-Tn antibodies levels were significantly lower in patients as compared to non-infected individuals. This was not observed for any of the other tested carbohydrate epitopes, including anti-αGal antibodies used as a negative control since the epitope cannot be synthesized by humans. Owing to structural homologies with blood groups A and B antigens, we also observed that anti-Tn and anti-αGal antibodies levels were lower in blood group A and B, respectively. Analyses of correlations between anti-Tn and the other anti-carbohydrates tested revealed divergent patterns of correlations between patients and controls, suggesting qualitative differences in addition to the quantitative difference. Furthermore, anti-Tn levels correlated with anti-S protein levels in the patients' group, suggesting that anti-Tn might contribute to the development of the specific antiviral response. Overall, this first analysis allows to hypothesize that natural anti-Tn antibodies might be protective against COVID-19.

4.
Viruses ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499228

RESUMEN

Since the emergence of COVID-19, many publications have reported associations with ABO blood types. Despite between-study discrepancies, an overall consensus has emerged whereby blood group O appears associated with a lower risk of COVID-19, while non-O blood types appear detrimental. Two major hypotheses may explain these findings: First, natural anti-A and anti-B antibodies could be partially protective against SARS-CoV-2 virions carrying blood group antigens originating from non-O individuals. Second, O individuals are less prone to thrombosis and vascular dysfunction than non-O individuals and therefore could be at a lesser risk in case of severe lung dysfunction. Here, we review the literature on the topic in light of these hypotheses. We find that between-study variation may be explained by differences in study settings and that both mechanisms are likely at play. Moreover, as frequencies of ABO phenotypes are highly variable between populations or geographical areas, the ABO coefficient of variation, rather than the frequency of each individual phenotype is expected to determine impact of the ABO system on virus transmission. Accordingly, the ABO coefficient of variation correlates with COVID-19 prevalence. Overall, despite modest apparent risk differences between ABO subtypes, the ABO blood group system might play a major role in the COVID-19 pandemic when considered at the population level.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/sangre , COVID-19/sangre , Susceptibilidad a Enfermedades/sangre , COVID-19/epidemiología , COVID-19/microbiología , Susceptibilidad a Enfermedades/epidemiología , Susceptibilidad a Enfermedades/microbiología , Susceptibilidad a Enfermedades/patología , Humanos , Incidencia , Isoanticuerpos/sangre , Microbiota , Oportunidad Relativa , SARS-CoV-2 , Trombosis/sangre , Trombosis/epidemiología , Trombosis/microbiología
5.
Front Microbiol ; 12: 799519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069504

RESUMEN

ABO blood groups appear to be associated with the risk of SARS-CoV-2 infection, but the underlying mechanisms and their real importance remain unclear. Two hypotheses have been proposed: ABO compatibility-dependence (neutralization by anti-ABO antibodies) and ABO-dependent intrinsic susceptibility (spike protein attachment to histo-blood group glycans). We tested the first hypothesis through an anonymous questionnaire addressed to hospital staff members. We estimated symptomatic secondary attack rates (SAR) for 333 index cases according to spouse ABO blood group compatibility. Incompatibility was associated with a lower SAR (28% vs. 47%; OR 0.43, 95% CI 0.27-0.69), but no ABO dependence was detected in compatible situations. For the second hypothesis, we detected no binding of recombinant SARS-CoV-2 RBD to blood group-containing glycans. Thus, although no intrinsic differences in susceptibility according to ABO blood type were detected, ABO incompatibility strongly decreased the risk of COVID-19 transmission, suggesting that anti-ABO antibodies contribute to virus neutralization.

6.
Int J Infect Dis ; 104: 242-249, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33326874

RESUMEN

BACKGROUND: Susceptibility to Covid-19 has been found to be associated with the ABO blood group, with O type individuals being at a lower risk. However, the underlying mechanism has not been elucidated. Here, we aimed to test the hypothesis that Covid-19 patients might have lower levels of ABO antibodies than non-infected individuals as they could offer some degree of protection. METHODS: After showing that the viral spike protein harbors the ABO glycan epitopes when produced by cells expressing the relevant glycosyltransferases, like upper respiratory tract epithelial cells, we enrolled 290 patients with Covid-19 and 276 asymptomatic controls to compare their levels of natural ABO blood group antibodies. RESULTS: We found significantly lower IgM anti-A + anti-B agglutination scores in blood group O patients (76.93 vs 88.29, P-value = 0.034) and lower levels of anti-B (24.93 vs 30.40, P-value = 0.028) and anti-A antibodies (28.56 vs 36.50, P-value = 0.048) in blood group A and blood group B patients, respectively, compared to controls. CONCLUSION: In this study, we showed that ABO antibody levels are significantly lower in Covid-19 patients compared to controls. These findings could indicate that patients with low levels of ABO antibodies are at higher risk of being infected.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/inmunología , Anticuerpos/sangre , COVID-19/sangre , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Susceptibilidad a Enfermedades , Células Epiteliales/inmunología , Epítopos/inmunología , Femenino , Galactosiltransferasas , Humanos , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Riesgo , Adulto Joven
7.
Cell Microbiol ; 22(12): e13258, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32862508

RESUMEN

The Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white-tail disease (WTD) in many species of shrimp and prawn, has been shown to infect hemocytes and tissues such as the gills and muscles. However, little is known about the host surface molecules to which MrNV attach to initiate infection. Therefore, the present study investigated the role of glycans as binding molecules for virus attachment in susceptible tissues such as the gills. We established that MrNV in their virus-like particle (MrNV-VLP) form exhibited strong binding to gill tissues and lysates, which was highly reduced by the glycan-reducing periodate and PNGase F. The broad, fucose-binding Aleuria Aurantia lectin (AAL) highly reduced MrNV-VLPs binding to gill tissue sections and lysates, and efficiently disrupted the specific interactions between the VLPs and gill glycoproteins. Furthermore, mass spectroscopy revealed the existence of unique fucosylated LacdiNAc-extended N-linked and O-linked glycans in the gill tissues, whereas beta-elimination experiments showed that MrNV-VLPs demonstrated a binding preference for N-glycans. Therefore, the results from this study highly suggested that MrNV-VLPs preferentially attach to fucosylated N-glycans in the susceptible gill tissues, and these findings could lead to the development of strategies that target virus-host surface glycan interactions to reduce MrNV infections.


Asunto(s)
Fucosa/metabolismo , Branquias/virología , Nodaviridae/metabolismo , Palaemonidae/virología , Polisacáridos/metabolismo , Acoplamiento Viral , Animales , Glicoproteínas/metabolismo , Nodaviridae/química
9.
J Infect Dis ; 222(5): 836-839, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32188998

RESUMEN

In Tunisia, we observed that rotavirus P[8]-3 and P[4] strains in young children with gastroenteritis associate with secretor histo-blood group phenotype. In contrast, the emerging P[8]-4 strain, representing 10% of cases, was exclusively found in nonsecretor patients. Unlike VP8* from P[8]-3 and P[4] strains, the P[8]-4 VP8* protein attached to glycans from saliva samples regardless of the donor's secretor status. Interestingly, a high frequency of FUT2 enzyme deficiency (nonsecretor phenotype) was observed in the population. This may allow cocirculation of P[8]-3 and P[8]-4 strains in secretor and nonsecretor children, respectively.


Asunto(s)
Fucosiltransferasas/genética , Especificidad del Huésped , Proteínas de Unión al ARN/metabolismo , Infecciones por Rotavirus/genética , Rotavirus/genética , Proteínas no Estructurales Virales/metabolismo , Preescolar , Genotipo , Humanos , Lactante , Recién Nacido , Fenotipo , Polisacáridos/metabolismo , Proteínas de Unión al ARN/genética , Rotavirus/fisiología , Saliva , Proteínas no Estructurales Virales/genética , Acoplamiento Viral , Galactósido 2-alfa-L-Fucosiltransferasa
10.
Placenta ; 90: 98-102, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32056559

RESUMEN

The aim of the study was to investigate the content and distribution of fucosylated sugar residues and Lewis Y (LeY) in the endothelial glycocalyx (eGC) in placental tissue at early and late onset fetal growth restriction (FGR). Our findings demonstrated that the changes of the fucosylated glycans of type 2 (H2)/LeY in the vascular endothelium of the villi may reflect alteration of villi maturation, or adaptation to hypoxia through the change of cell proliferation potential and induction angiogenesis. Early onset FGR differs from late onset FGR by a markedly increased LeY expression, being associated with more severe pathological state.


Asunto(s)
Vellosidades Coriónicas/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Glicocálix/metabolismo , Polisacáridos/metabolismo , Vellosidades Coriónicas/patología , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/patología , Humanos , Placenta/metabolismo , Placenta/patología , Embarazo , Ultrasonografía Prenatal
11.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187537

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal ß-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepuseuropaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.


Asunto(s)
Infecciones por Caliciviridae/virología , Virus de la Enfermedad Hemorrágica del Conejo/fisiología , Lagomorpha/virología , Lagovirus/fisiología , Polisacáridos/metabolismo , Virulencia , Acoplamiento Viral , Animales , Infecciones por Caliciviridae/metabolismo , Susceptibilidad a Enfermedades , Liebres , Lagomorpha/clasificación , Lagomorpha/metabolismo , Filogenia , Conejos , Especificidad de la Especie
12.
Front Microbiol ; 7: 864, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375585

RESUMEN

This study aims to investigate the effect of Bifidobacterium adolescentis against noroviruses (NoVs). Murine norovirus-1 (MNV-1) used as a surrogate was detected by plaque assay and RT-qPCR. Human NoV virus like particles (VLPs) were detected by cell-binding assay. It was shown that the presence of B. adolescentis could inhibit the multiplication of MNV-1 on RAW 264.7 cells within 48 h of co-incubation period at 37°C. This inhibition did not occur at the viral binding stage, as no difference was observed in MNV-1 genomic copies collected from washed RAW 264.7 cells without and with B. adolescentis after co-incubation for 1 h at room temperature. Meanwhile, the presence of B. adolescentis decreased the binding of human NoV GI.1 VLPs to both Caco-2 cells and HT-29 cells, while no reduction was induced for the binding of human NoV GII.4 VLPs to Caco-2 cells.

13.
Oncotarget ; 7(12): 14064-82, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26908442

RESUMEN

Terminal fucosylated motifs of glycoproteins and glycolipid chains are often altered in cancer cells. We investigated the link between fucosylation changes and critical steps in cancer progression: epithelial-to-mesenchymal transition (EMT) and lymph node metastasis.Using mammary cell lines, we demonstrate that during EMT, expression of some fucosylated antigens (e.g.: Lewis Y) is decreased as a result of repression of the fucosyltransferase genes FUT1 and FUT3. Moreover, we identify the fucose-binding bacterial lectin BC2L-C-Nt as a specific probe for the epithelial state.Prolectin (CLEC17A), a human lectin found on lymph node B cells, shares ligand specificities with BC2L-C-Nt. It binds preferentially to epithelial rather than to mesenchymal cells, and microfluidic experiments showed that prolectin behaves as a cell adhesion molecule for epithelial cells. Comparison of paired primary tumors/lymph node metastases revealed an increase of prolectin staining in metastasis and high FUT1 and FUT3 mRNA expression was associated with poor prognosis. Our data suggest that tumor cells invading the lymph nodes and expressing fucosylated motifs associated with the epithelial state could use prolectin as a colonization factor.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Fucosiltransferasas/metabolismo , Lectinas Tipo C/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Fucosiltransferasas/genética , Humanos , Lectinas Tipo C/genética , Metástasis Linfática , Células Tumorales Cultivadas , Galactósido 2-alfa-L-Fucosiltransferasa
14.
Front Microbiol ; 6: 659, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26191052

RESUMEN

This study aims to investigate if histo-blood group antigen (HBGA) expressing bacteria have any protective role on human norovirus (NoV) from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and B. longum. HBGA expression of the bacteria as well as binding of human NoV virus-like particles (VLPs, GI.1, and GII.4 strains) to the bacteria were detected by flow cytometry. NoV VLPs pre-incubated with HBGA expressing or non-HBGA expressing bacteria were heated and detected by both direct ELISA and porcine gastric mucin-binding assay. The NoV-binding abilities of the bacteria correlated well with their HBGA expression profiles. Two HBGA expressing E. coli (LMG8223 and LFMFP861, both GI.1 and GII.4 binders) and one non-HBGA expressing E. coli (ATCC8739, neither GI.1 nor GII.4 binder) were selected for the heat treatment test with NoV VLPs. Compared with the same cell numbers of non-HBGA expressing E. coli, the presence of HBGA-expressing E. coli could always maintain higher antigen integrity, as well as mucin-binding ability of NoV VLPs of both GI.1 and GII.4 after heat-treatment at 90°C for 2 min. These results indicate that HBGA-expressing bacteria may protect NoVs during the food processing treatments, thereby facilitating their transmission.

15.
PLoS One ; 10(6): e0128190, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042789

RESUMEN

Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing ß-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcß1-3Gal epitopes and for biantennary N-glycans with GlcNAcß1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcß1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.


Asunto(s)
Agaricales/química , Lectinas/metabolismo , Neoplasias/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Acetilglucosamina/metabolismo , Secuencia de Carbohidratos , Línea Celular Tumoral , Cristalografía por Rayos X , Epítopos/metabolismo , Glicoconjugados/química , Glicosilación , Humanos , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Regulación hacia Arriba
16.
Antimicrob Agents Chemother ; 59(1): 693-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348525

RESUMEN

Tuberculosis remains a major health problem due to the emergence of drug-resistant strains of Mycobacterium tuberculosis. Some models have provided valuable information about drug resistance and efficacy; however, the translation of these results into effective human treatments has mostly proven unsuccessful. In this study, we adapted high-content screening (HCS) technology to investigate the activities of antitubercular compounds in the context of an in vitro granuloma model. We observed significant shifts in the MIC50s between the activities of the compounds under extracellular and granuloma conditions.


Asunto(s)
Antituberculosos/farmacología , Granuloma/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/tratamiento farmacológico
17.
J Virol ; 88(18): 10377-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008923

RESUMEN

UNLABELLED: Human noroviruses (HuNV) are a significant cause of viral gastroenteritis in humans worldwide. HuNV attaches to cell surface carbohydrate structures known as histo-blood group antigens (HBGAs) prior to internalization, and HBGA polymorphism among human populations is closely linked to susceptibility to HuNV. Noroviruses are divided into 6 genogroups, with human strains grouped into genogroups I (GI), II, and IV. Canine norovirus (CNV) is a recently discovered pathogen in dogs, with strains classified into genogroups IV and VI. Whereas it is known that GI to GIII noroviruses bind to HBGAs and GV noroviruses recognize terminal sialic acid residues, the attachment factors for GIV and GVI noroviruses have not been reported. This study sought to determine the carbohydrate binding specificity of CNV and to compare it to the binding specificities of noroviruses from other genogroups. A panel of synthetic oligosaccharides were used to assess the binding specificity of CNV virus-like particles (VLPs) and identified α1,2-fucose as a key attachment factor. CNV VLP binding to canine saliva and tissue samples using enzyme-linked immunosorbent assays (ELISAs) and immunohistochemistry confirmed that α1,2-fucose-containing H and A antigens of the HBGA family were recognized by CNV. Phenotyping studies demonstrated expression of these antigens in a population of dogs. The virus-ligand interaction was further characterized using blockade studies, cell lines expressing HBGAs, and enzymatic removal of candidate carbohydrates from tissue sections. Recognition of HBGAs by CNV provides new insights into the evolution of noroviruses and raises concerns regarding the potential for zoonotic transmission of CNV to humans. IMPORTANCE: Infections with human norovirus cause acute gastroenteritis in millions of people each year worldwide. Noroviruses can also affect nonhuman species and are divided into 6 different groups based on their capsid sequences. Human noroviruses in genogroups I and II interact with histo-blood group antigen carbohydrates, bovine noroviruses (genogroup III) interact with alpha-galactosidase (α-Gal) carbohydrates, and murine norovirus (genogroup V) recognizes sialic acids. The canine-specific strains of norovirus are grouped into genogroups IV and VI, and this study is the first to characterize which carbohydrate structures they can recognize. Using canine norovirus virus-like particles, this work shows that representative genogroup IV and VI viruses can interact with histo-blood group antigens. The binding specificity of canine noroviruses is therefore very similar to that of the human norovirus strains classified into genogroups I and II. This raises interesting questions about the evolution of noroviruses and suggests it may be possible for canine norovirus to infect humans.


Asunto(s)
Antígenos de Grupos Sanguíneos/metabolismo , Enfermedades de los Perros/metabolismo , Gastroenteritis/veterinaria , Norovirus/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Grupos Sanguíneos/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Bovinos , Enfermedades de los Perros/virología , Perros , Evolución Molecular , Femenino , Gastroenteritis/metabolismo , Gastroenteritis/virología , Humanos , Datos de Secuencia Molecular , Norovirus/química , Norovirus/clasificación , Norovirus/genética , Unión Proteica , Alineación de Secuencia
18.
J Infect Dis ; 210(2): 183-91, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24459192

RESUMEN

BACKGROUND: Noroviruses (NoVs) represent a considerable public health burden. Despite their enormous genetic diversity, most outbreaks are due to the single GII.4 genotype, but the reasons for this are poorly understood. NoVs use histo-blood group antigens (HBGAs) as attachment factors. Since HBGAs are present in saliva, binding of strains to saliva is commonly used as a surrogate for recognition of the gut surface by specific strains, although the relationship between saliva and gut tissue expression of HBGAs is not well defined. METHODS: The presence of fucosylated HBGAs in saliva and stomach biopsy specimens, as well as that of genogroup I.1 and genogroup II.4 virus-like particles, were compared in a series of 109 donors from Portugal. RESULTS: An overall good concordance between HBGA expression in saliva and stomach surface mucosa was observed. However, unexpected mucosal expression of α(1,2)fucosylated epitopes in nonsecretor individuals was frequently detected, allowing for GII.4 attachment. Although all individuals were infected with Helicobacter pylori, abnormal expression of α(1,2)fucosylated motifs and binding of GII.4 virus-like particles in nonsecretors' mucosa were associated with positivity for the H. pylori CagA virulence factor. CONCLUSIONS: Infection by CagA-positive H. pylori induces expression of GII.4 attachment factors in nonsecretors' mucosa, expanding the host range of these strains and thereby possibly contributing to their epidemiological dominance.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Antígenos de Grupos Sanguíneos/análisis , Mucosa Gástrica/química , Mucosa Gástrica/virología , Norovirus/aislamiento & purificación , Saliva/química , Saliva/virología , Genotipo , Voluntarios Sanos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Norovirus/clasificación , Norovirus/genética , Portugal , Receptores Virales/análisis , Factores de Virulencia/metabolismo
19.
J Gen Virol ; 94(Pt 4): 720-725, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23255618

RESUMEN

Vaccinia virus (VACV) has two infectious forms called intracellular mature virus and extracellular enveloped virus (EEV). Two of the seven viral proteins in the EEV outer envelope, A33 and A34, are type II membrane glycoproteins that each interact with another EEV protein called B5; however, evidence for direct A33-A34 interaction is lacking. The localization and stability of A34 is affected by B5 and here data are presented showing that A34 is also affected by A33. In the absence of A33, just as without B5, the level, localization and glycosylation profile of A34 was altered. However, the glycosylation profile of A34 without A33 is different to that observed in the absence of B5, and A34 accumulates in the Golgi apparatus rather than in the endoplasmic reticulum. Thus, A34 requires more than one other EEV protein for its processing and cellular transport.


Asunto(s)
Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Mapeo de Interacción de Proteínas , Virus Vaccinia/fisiología , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Estabilidad Proteica , Transporte de Proteínas
20.
Clin Dev Immunol ; 2012: 139127, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22811737

RESUMEN

One of the main features of the immune response to M. Tuberculosis is the formation of an organized structure called granuloma. It consists mainly in the recruitment at the infectious stage of macrophages, highly differentiated cells such as multinucleated giant cells, epithelioid cells and Foamy cells, all these cells being surrounded by a rim of lymphocytes. Although in the first instance the granuloma acts to constrain the infection, some bacilli can actually survive inside these structures for a long time in a dormant state. For some reasons, which are still unclear, the bacilli will reactivate in 10% of the latently infected individuals, escape the granuloma and spread throughout the body, thus giving rise to clinical disease, and are finally disseminated throughout the environment. In this review we examine the process leading to the formation of the granulomatous structures and the different cell types that have been shown to be part of this inflammatory reaction. We also discuss the different in vivo and in vitro models available to study this fascinating immune structure.


Asunto(s)
Granuloma/inmunología , Granuloma/patología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/patología , Animales , Modelos Animales de Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...