Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biotechnol ; 51(1): 18-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21732077

RESUMEN

Petroleum hydrocarbons (PHC) in soil are potentially toxic to plants and exert negative effect on the environment and human health. To understand the effect of PHC on the gene expression profile of a wetland plant Spartina alterniflora in the coastal Louisiana, plants were subject up to 40% PHC under greenhouse conditions. The plants exposed to PHC showed 21% reduction of leaf total chlorophyll after 2 weeks of stress. Using 20 annealing control primers, 28 differentially expressing genes (DEGs) were identified in leaf and root tissues of S. alterniflora in response to PHC stress. Eleven of these 28 DEGs had role in either molecular function (chlorophyll a-b binding protein, HSP70, NADH, RAN1-binding protein, and RNA-binding protein), biological processes (cell wall protein, nucelosome/chromatin assembly factor) or cellular function (30 S ribosomal protein). This indicated that genes in different regulatory pathways of S. alterniflora were involved in response to PHC. All DEGs showed reduced transcript accumulation in root under oil stress, whereas they showed up- or down-regulation in their transcript abundance in leaf depending on the concentration of the PHC. The genes identified through this study could be used in the genetic screen of S. alterniflora for resistance to PHC.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidrocarburos/farmacología , Petróleo/metabolismo , Poaceae/efectos de los fármacos , Poaceae/genética , Cartilla de ADN/metabolismo , Genes de Plantas/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Poaceae/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
2.
Environ Sci Technol ; 44(10): 4019-25, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20429594

RESUMEN

Chinese tallow tree (TT) seeds are a rich source of lipids and have the potential to be a biodiesel feedstock, but currently, its invasive nature does not favor large scale cultivation. Being a nonfood material, they have many advantages over conventional crops that are used for biodiesel production. The purpose of this study was to determine optimal oil extraction parameters in a batch-type and laboratory scale continuous-flow microwave system to obtain maximum oil recovery from whole TT seeds using ethanol as the extracting solvent. For the batch system, extractions were carried out for different time-temperature combinations ranging from 60 to 120 degrees C for up to 20 min. The batch system was modified for continuous extractions, which were carried out at 50, 60, and 73 degrees C and maintained for various residence times of up to 20 min. Control runs were performed under similar extraction conditions and the results compared well, especially when accounting for extremely short extraction times (minutes vs hours). Maximum yields of 35.32% and 32.51% (by weight of dry mass) were obtained for the continuous and batch process, respectively. The major advantage of microwave assisted solvent extraction is the reduced time of extraction required to obtain total recoverable lipids, with corresponding reduction in energy consumption costs per unit of lipid extracted. This study indicates that microwave extraction using ethanol as a solvent can be used as a viable alternative to conventional lipid extraction techniques for TT seeds.


Asunto(s)
Biocombustibles , Microondas , Semillas , Árboles/embriología
3.
Chemosphere ; 76(4): 517-22, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19349060

RESUMEN

Dynamics of carbon (C) gas emission from wetlands influence global C cycling. In many freshwater systems such as Louisiana freshwater marsh, soil contents of NO3(-) and SO4(2-) have increased due to nutrient loading and saltwater intrusion. This could affect C mineralization and the emission of the major greenhouse gases carbon dioxide (CO2) and methane (CH4). In this investigation, a laboratory microcosm study was carried out to elucidate the effects of NO(3)(-) and SO4(2-) on CO2 and CH4 production from a freshwater marsh soil located in the Barataria Basin of Louisiana coast, which has been subjected to the Mississippi River diversion and seawater intrusion. Composite soil samples were collected from top 50 cm marsh profile, treated with different levels of NO3(-) (0, 3.2 and 5mM) or SO4(2-) (0, 2, and 5mM) concentrations, and incubated for 214d under anaerobic conditions. The results showed that the presence of NO3(-) (especially at 3.2mM) significantly decreased CO2 productions whereas SO4(2-) did not. On the other hand, both NO(3)(-) and SO4(2-) treatments decreased CH4 production but the NO3(-) almost completely inhibited CH4 production (>99%) whereas the SO4(2-) treatments reduced CH4 production by 78-90%. The overall C mineralization rate constant under the NO3(-) presence was also low. In addition, the results revealed that a large proportion (95%) of anaerobic carbon mineralization in the untreated freshwater soil was unexplained by the reduction of any of the measured major electron acceptors.


Asunto(s)
Dióxido de Carbono/química , Carbono/química , Gases/química , Metano/química , Suelo , Dióxido de Carbono/análisis , Transporte de Electrón , Agua Dulce , Metano/análisis , Nitratos/química , Sulfatos/química , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA