Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063161

RESUMEN

Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.


Asunto(s)
Capacitación Espermática , Espermatozoides , Zinc , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Zinc/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Porcinos , Metaboloma , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas
2.
Microbiol Spectr ; 10(2): e0007322, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35323033

RESUMEN

Gastrointestinal illnesses and dysbiosis are among the most common comorbidities reported in patients with neurodevelopmental disorders. The manuscript reports that C. difficile infection (CDI), predisposed by antibiotic-induced gut dysbiosis, causes significant alterations in dopamine metabolism in major dopaminergic brain regions in mice (P < 0.05). In addition, C. difficile infected mice exhibited significantly reduced dopamine beta-hydroxylase (DBH) activity compared to controls (P < 0.01). Moreover, a significantly increased serum concentration of p-cresol, a DBH inhibiting gut metabolite produced by C. difficile, was also observed in C. difficile infected mice (P < 0.05). Therefore, this study suggests a potential mechanistic link between CDI and alterations in the brain dopaminergic axis. Such alterations may plausibly influence the precipitation and aggravation of dopamine dysmetabolism-associated neurologic diseases in infected patients. IMPORTANCE The gut-brain axis is thought to play a significant role in the development and manifestation of neurologic diseases. This study reports significant alterations in the brain dopamine metabolism in mice infected with C. difficile, an important pathogen that overgrows in the gut after prolonged antibiotic therapy. Such alterations in specific brain regions may have an effect on the precipitation or manifestation of neurodevelopmental disorders in humans.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Antibacterianos , Encéfalo , Dopamina , Disbiosis , Humanos , Ratones
3.
Plant Cell ; 31(9): 1968-1989, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239390

RESUMEN

Premature senescence in annual crops reduces yield, while delayed senescence, termed stay-green, imposes positive and negative impacts on yield and nutrition quality. Despite its importance, scant information is available on the genetic architecture of senescence in maize (Zea mays) and other cereals. We combined a systematic characterization of natural diversity for senescence in maize and coexpression networks derived from transcriptome analysis of normally senescing and stay-green lines. Sixty-four candidate genes were identified by genome-wide association study (GWAS), and 14 of these genes are supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport and signaling, and sink activity. Eight of the GWAS candidates, independently supported by a coexpression network underlying stay-green, include a trehalose-6-phosphate synthase, a NAC transcription factor, and two xylan biosynthetic enzymes. Source-sink communication and the activity of cell walls as a secondary sink emerge as key determinants of stay-green. Mutant analysis supports the role of a candidate encoding Cys protease in stay-green in Arabidopsis (Arabidopsis thaliana), and analysis of natural alleles suggests a similar role in maize. This study provides a foundation for enhanced understanding and manipulation of senescence for increasing carbon yield, nutritional quality, and stress tolerance of maize and other cereals.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucosiltransferasas/genética , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Transcriptoma
4.
Front Plant Sci ; 7: 822, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375668

RESUMEN

Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for non-structural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed in internodes of maize (11-24%) and sorghum (7-36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8-19%) and sorghum (9-27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9-21%) and sorghum (16-27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15-18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. Availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops.

5.
Plant Physiol ; 165(2): 658-669, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24710068

RESUMEN

Seed size is a component of grain yield and an important trait in crop domestication. To understand the mechanisms governing seed size in maize (Zea mays), we examined transcriptional and developmental changes during seed development in populations divergently selected for large and small seed size from Krug, a yellow dent maize cultivar. After 30 cycles of selection, seeds of the large seed population (KLS30) have a 4.7-fold greater weight and a 2.6-fold larger size compared with the small seed population (KSS30). Patterns of seed weight accumulation from the time of pollination through 30 d of grain filling showed an earlier onset, slower rate, and earlier termination of grain filling in KSS30 relative to KLS30. This was further supported by transcriptome patterns in seeds from the populations and derived inbreds. Although the onset of key genes was earlier in small seeds, similar maximum transcription levels were observed in large seeds at later stages, suggesting that functionally weaker alleles, rather than transcript abundance, may be the basis of the slow rate of seed filling in KSS30. Gene coexpression networks identified several known genes controlling cellularization and proliferation as well as novel genes that will be useful candidates for biotechnological approaches aimed at altering seed size in maize and other cereals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA