Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 22(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684825

RESUMEN

Automatic identification of human facial expressions has many potential applications in today's connected world, from mental health monitoring to feedback for onscreen content or shop windows and sign-language prosodic identification. In this work we use visual information as input, namely, a dataset of face points delivered by a Kinect device. The most recent work on facial expression recognition uses Machine Learning techniques, to use a modular data-driven path of development instead of using human-invented ad hoc rules. In this paper, we present a Machine-Learning based method for automatic facial expression recognition that leverages information fusion architecture techniques from our previous work and soft voting. Our approach shows an average prediction performance clearly above the best state-of-the-art results for the dataset considered. These results provide further evidence of the usefulness of information fusion architectures rather than adopting the default ML approach of features aggregation.


Asunto(s)
Reconocimiento Facial , Cara , Expresión Facial , Humanos , Aprendizaje Automático , Política
2.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770318

RESUMEN

Multi-sensor fusion intends to boost the general reliability of a decision-making procedure or allow one sensor to compensate for others' shortcomings. This field has been so prominent that authors have proposed many different fusion approaches, or "architectures" as we call them when they are structurally different, so it is now challenging to prescribe which one is better for a specific collection of sensors and a particular application environment, other than by trial and error. We propose an approach capable of predicting the best fusion architecture (from predefined options) for a given dataset. This method involves the construction of a meta-dataset where statistical characteristics from the original dataset are extracted. One challenge is that each dataset has a different number of variables (columns). Previous work took the principal component analysis's first k components to make the meta-dataset columns coherent and trained machine learning classifiers to predict the best fusion architecture. In this paper, we take a new route to build the meta-dataset. We use the Sequential Forward Floating Selection algorithm and a T transform to reduce the features and match them to a given number, respectively. Our findings indicate that our proposed method could improve the accuracy in predicting the best sensor fusion architecture for multiple domains.


Asunto(s)
Algoritmos , Aprendizaje Automático , Reproducibilidad de los Resultados
3.
Healthcare (Basel) ; 9(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34356262

RESUMEN

Children's healthcare is a relevant issue, especially the prevention of domestic accidents, since it has even been defined as a global health problem. Children's activity classification generally uses sensors embedded in children's clothing, which can lead to erroneous measurements for possible damage or mishandling. Having a non-invasive data source for a children's activity classification model provides reliability to the monitoring system where it is applied. This work proposes the use of environmental sound as a data source for the generation of children's activity classification models, implementing feature selection methods and classification techniques based on Bayesian networks, focused on the recognition of potentially triggering activities of domestic accidents, applicable in child monitoring systems. Two feature selection techniques were used: the Akaike criterion and genetic algorithms. Likewise, models were generated using three classifiers: naive Bayes, semi-naive Bayes and tree-augmented naive Bayes. The generated models, combining the methods of feature selection and the classifiers used, present accuracy of greater than 97% for most of them, with which we can conclude the efficiency of the proposal of the present work in the recognition of potentially detonating activities of domestic accidents.

4.
Sensors (Basel) ; 20(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326125

RESUMEN

Multi-sensor fusion refers to methods used for combining information coming from several sensors (in some cases, different ones) with the aim to make one sensor compensate for the weaknesses of others or to improve the overall accuracy or the reliability of a decision-making process. Indeed, this area has made progress, and the combined use of several sensors has been so successful that many authors proposed variants of fusion methods, to the point that it is now hard to tell which of them is the best for a given set of sensors and a given application context. To address the issue of choosing an adequate fusion method, we recently proposed a machine-learning data-driven approach able to predict the best merging strategy. This approach uses a meta-data set with the Statistical signatures extracted from data sets of a particular domain, from which we train a prediction model. However, the mentioned work is restricted to the recognition of human activities. In this paper, we propose to extend our previous work to other very different contexts, such as gas detection and grammatical face expression identification, in order to test its generality. The extensions of the method are presented in this paper. Our experimental results show that our extended model predicts the best fusion method well for a given data set, making us able to claim a broad generality for our sensor fusion method.

5.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484423

RESUMEN

In Ambient Intelligence (AmI), the activity a user is engaged in is an essential part of the context, so its recognition is of paramount importance for applications in areas like sports, medicine, personal safety, and so forth. The concurrent use of multiple sensors for recognition of human activities in AmI is a good practice because the information missed by one sensor can sometimes be provided by the others and many works have shown an accuracy improvement compared to single sensors. However, there are many different ways of integrating the information of each sensor and almost every author reporting sensor fusion for activity recognition uses a different variant or combination of fusion methods, so the need for clear guidelines and generalizations in sensor data integration seems evident. In this survey we review, following a classification, the many fusion methods for information acquired from sensors that have been proposed in the literature for activity recognition; we examine their relative merits, either as they are reported and sometimes even replicated and a comparison of these methods is made, as well as an assessment of the trends in the area.


Asunto(s)
Actividades Cotidianas , Técnicas Biosensibles/métodos , Actividades Humanas , Humanos , Encuestas y Cuestionarios
6.
Sensors (Basel) ; 19(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035731

RESUMEN

Sensors are becoming more and more ubiquitous as their price and availability continue to improve, and as they are the source of information for many important tasks. However, the use of sensors has to deal with noise and failures. The lack of reliability in the sensors has led to many forms of redundancy, but simple solutions are not always the best, and the precise way in which several sensors are combined has a big impact on the overall result. In this paper, we discuss how to deal with the combination of information coming from different sensors, acting thus as "virtual sensors", in the context of human activity recognition, in a systematic way, aiming for optimality. To achieve this goal, we construct meta-datasets containing the "signatures" of individual datasets, and apply machine-learning methods in order to distinguish when each possible combination method could be actually the best. We present specific results based on experimentation, supporting our claims of optimality.


Asunto(s)
Movimiento , Reconocimiento de Normas Patrones Automatizadas/métodos , Humanos , Aprendizaje Automático , Integración de Sistemas
7.
Sensors (Basel) ; 16(6)2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27314355

RESUMEN

Human Activity Recognition (HAR) is an important part of ambient intelligence systems since it can provide user-context information, thus allowing a greater personalization of services. One of the problems with HAR systems is that the labeling process for the training data is costly, which has hindered its practical application. A common approach is to train a general model with the aggregated data from all users. The problem is that for a new target user, this model can perform poorly because it is biased towards the majority type of users and does not take into account the particular characteristics of the target user. To overcome this limitation, a user-dependent model can be trained with data only from the target user that will be optimal for this particular user; however, this requires a considerable amount of labeled data, which is cumbersome to obtain. In this work, we propose a method to build a personalized model for a given target user that does not require large amounts of labeled data. Our method uses data already labeled by a community of users to complement the scarce labeled data of the target user. Our results showed that the personalized model outperformed the general and the user-dependent models when labeled data is scarce.

8.
Sensors (Basel) ; 15(8): 20355-72, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26295237

RESUMEN

In this paper, we present the development of an infrastructure-less indoor location system (ILS), which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user's location in an indoor environment. A multivariate model is applied to find the user's location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth's magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information.

9.
Sensors (Basel) ; 14(12): 22500-24, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25436652

RESUMEN

With the development of wearable devices that have several embedded sensors, it is possible to collect data that can be analyzed in order to understand the user's needs and provide personalized services. Examples of these types of devices are smartphones, fitness-bracelets, smartwatches, just to mention a few. In the last years, several works have used these devices to recognize simple activities like running, walking, sleeping, and other physical activities. There has also been research on recognizing complex activities like cooking, sporting, and taking medication, but these generally require the installation of external sensors that may become obtrusive to the user. In this work we used acceleration data from a wristwatch in order to identify long-term activities. We compare the use of Hidden Markov Models and Conditional Random Fields for the segmentation task. We also added prior knowledge into the models regarding the duration of the activities by coding them as constraints and sequence patterns were added in the form of feature functions. We also performed subclassing in order to deal with the problem of intra-class fragmentation, which arises when the same label is applied to activities that are conceptually the same but very different from the acceleration point of view.


Asunto(s)
Acelerometría/métodos , Actigrafía/métodos , Monitoreo Ambulatorio/métodos , Actividad Motora/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Inteligencia Artificial , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Estudios Longitudinales , Cadenas de Markov , Modelos Estadísticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
10.
Sensors (Basel) ; 14(6): 11001-15, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24955944

RESUMEN

User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices, which allows us to exploit not only infrastructures made for everyday use, such as WiFi, but also natural infrastructure, as is the case of natural magnetic field. In this paper we present an extension and improvement of our current indoor localization model based on the feature extraction of 46 magnetic field signal features. The extension adds a feature selection phase to our methodology, which is performed through Genetic Algorithm (GA) with the aim of optimizing the fitness of our current model. In addition, we present an evaluation of the final model in two different scenarios: home and office building. The results indicate that performing a feature selection process allows us to reduce the number of signal features of the model from 46 to 5 regardless the scenario and room location distribution. Further, we verified that reducing the number of features increases the probability of our estimator correctly detecting the user's location (sensitivity) and its capacity to detect false positives (specificity) in both scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...