Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 24(7): 1780-92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29210237

RESUMEN

Fences that exclude alien invasive species are used to reduce predation pressure on reintroduced threatened wildlife. Planning these continuously managed systems of reserves raises an important extension of the Single Large or Several Small (SLOSS) reserve planning framework: the added complexity of ongoing management. We investigate the long-term cost-efficiency of a single large or two small predator exclusion fences in the arid Australian context of reintroducing bilbies Macrotis lagotis, and we highlight the broader significance of our results with sensitivity analysis. A single fence more frequently results in a much larger net cost than two smaller fences. We find that the cost-efficiency of two fences is robust to strong demographic and environmental uncertainty, which can help managers to mitigate the risk of incurring high costs over the entire life of the project.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Animales , Análisis Costo-Beneficio , Monitoreo del Ambiente , Especies Introducidas , Marsupiales/fisiología , Modelos Biológicos , Dinámica Poblacional , Australia Occidental
2.
Conserv Biol ; 26(2): 199-207, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22443127

RESUMEN

Translocation, introduction, reintroduction, and assisted migrations are species conservation strategies that are attracting increasing attention, especially in the face of climate change. However, preventing the extinction of the suite of dependent species whose host species are threatened is seldom considered, and the effects on dependent species of moving threatened hosts are unclear. There is no published guidance on how to decide whether to move species, given this uncertainty. We examined the dependent-host system of 4 disparate taxonomic groups: insects on the feather-leaf banksia (Banksia brownii), montane banksia (B. montana), and Stirling Range beard heath (Leucopogon gnaphalioides); parasites of wild cats; mites and ticks on Duvaucel's gecko (Hoplodactylus duvaucelii) and tuatara (Sphenodon punctatus); and internal coccidian parasites of Cirl Bunting (Emberiza cirlus) and Hihi (Notiomystis cincta). We used these case studies to demonstrate a simple process for use in species- and community-level assessments of efforts to conserve dependents with their hosts. The insects dependent on Stirling Range beard heath and parasites on tigers (Panthera tigris) appeared to represent assemblages that would not be conserved by ex situ host conservation. In contrast, for the cases of dependent species we examined involving a single dependent species (internal parasites of birds and the mite Geckobia naultina on Duvaucel's gecko), ex situ conservation of the host species would also conserve the dependent species. However, moving dependent species with their hosts may be insufficient to maintain viable populations of the dependent species, and additional conservation strategies such as supplementing populations may be needed.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Extinción Biológica , Interacciones Huésped-Parásitos , Animales , Cambio Climático , Plantas , Australia Occidental
3.
Conserv Biol ; 25(4): 787-96, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21453365

RESUMEN

Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host-breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host-breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host-breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.


Asunto(s)
Extinción Biológica , Invertebrados , Animales , Teorema de Bayes , Medición de Riesgo , Incertidumbre
4.
J Anim Ecol ; 80(3): 558-68, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21198590

RESUMEN

1. Developing a predictive understanding of how species assemblages respond to fire is a key conservation goal. In moving from solely describing patterns following fire to predicting changes, plant ecologists have successfully elucidated generalizations based on functional traits. Using species traits might also allow better predictions for fauna, but there are few empirical tests of this approach. 2. We examined whether species traits changed with post-fire age for spiders in 27 sites, representing a chronosequence of 0-20 years post-fire. We predicted a priori whether spiders with ten traits associated with survival, dispersal, reproduction, resource-utilization and microhabitat occupation would increase or decrease with post-fire age. We then tested these predictions using a direct (fourth-corner on individual traits and composite traits) and an indirect (emergent groups) approach, comparing the benefits of each and also examining the degree to which traits were intercorrelated. 3. For the seven individual traits that were significant, three followed predictions (body size, abundance of burrow ambushers and burrowers was greater in recently burnt sites); two were opposite (species with heavy sclerotisation of the cephalothorax and longer time to maturity were in greater abundance in long unburnt and recently burnt sites respectively); and two displayed response patterns more complex than predicted (abdominal scutes displayed a U-shaped response and dispersal ability a hump shaped curve). However, within a given trait, there were few significant differences among post-fire ages. 4. Several traits were intercorrelated and scores based on composite traits used in a fourth-corner analysis found significant patterns, but slightly different to those using individual traits. Changes in abundance with post-fire age were significant for three of the five emergent groups. The fourth-corner analysis yielded more detailed results, but overall we consider the two approaches complementary. 5. While we found significant differences in traits with post-fire age, our results suggest that a trait-based approach may not increase predictive power, at least for the assemblages of spiders we studied. That said, there are many refinements to faunal traits that could increase predictive power.


Asunto(s)
Adaptación Biológica , Biota , Incendios , Arañas/fisiología , Animales , Conservación de los Recursos Naturales , Ecosistema , Dinámica Poblacional , Análisis de Componente Principal , Reproducción , Especificidad de la Especie , Arañas/anatomía & histología , Análisis de Supervivencia , Factores de Tiempo , Australia Occidental
5.
Conserv Biol ; 24(3): 682-90, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20067486

RESUMEN

Coextinction is a poorly quantified phenomenon, but results of recent modeling suggest high losses to global biodiversity through the loss of dependent species when hosts go extinct. There are critical gaps in coextinction theory, and we outline these in a framework to direct future research toward more accurate estimates of coextinction rates. Specifically, the most critical priorities include acquisition of more accurate host data, including the threat status of host species; acquisition of data on the use of hosts by dependent species across a wide array of localities, habitats, and breadth of both hosts and dependents; development of models that incorporate correlates of nonrandom host and dependent extinctions, such as phylogeny and traits that increase extinction-proneness; and determination of whether dependents are being lost before their hosts and adjusting models accordingly. Without synergistic development of better empirical data and more realistic models to estimate the number of cothreatened species and coextinction rates, the contribution of coextinction to global declines in biodiversity will remain unknown and unmanaged.


Asunto(s)
Extinción Biológica , Animales , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...