Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(7): 073502, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30068096

RESUMEN

The characterisation of x-rays from laser-plasma interactions is of utmost importance as they can be useful for both monitoring electron dynamics and also applications in an industrial capacity. A novel versatile scintillator x-ray spectrometer diagnostic that is capable of single shot measurements of x-rays produced from laser-plasma interactions is presented here. Examples of the design and extraction of the temperature of the spectrum of x-rays produced in an intense laser-solid interaction (479 ± 39 keV) and the critical energy from a betatron source (30 ± 10 keV) are discussed. Finally, a simple optimisation process involving adjusting the scintillator thickness for a particular range of input spectra is demonstrated.

2.
J Xray Sci Technol ; 23(6): 791-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26756414

RESUMEN

X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.


Asunto(s)
Bombas (Dispositivos Explosivos)/clasificación , Rayos Láser , Intensificación de Imagen Radiográfica/instrumentación , Dispersión de Radiación , Tomografía Computarizada por Rayos X/instrumentación , Guerra , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Rayos X
3.
Phys Rev Lett ; 109(1): 015001, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23031109

RESUMEN

This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10∶1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion.

4.
Phys Rev Lett ; 106(18): 185004, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21635098

RESUMEN

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.

5.
Phys Rev Lett ; 105(19): 195008, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-21231179

RESUMEN

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 2): 066406, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20365285

RESUMEN

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...