Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(50): E11595-E11603, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478047

RESUMEN

Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m-3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m-3) with more than 100-fold enhanced peak values (up to ∼720 ng·m-3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h-1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.

2.
Sci Rep ; 6: 36821, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845366

RESUMEN

The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.

3.
Geophys Res Lett ; 42(7): 2540-2546, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-26709320

RESUMEN

Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. KEY POINTS: The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010.

4.
Nat Commun ; 6: 7692, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26158244

RESUMEN

Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

5.
Nature ; 436(7053): 921-2, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16107823
6.
Rapid Commun Mass Spectrom ; 18(3): 299-306, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14755615

RESUMEN

A convenient method is described for analyzing the deuterium/hydrogen (D/H) ratio of atmospheric molecular hydrogen (H(2)) based on mass spectrometric isotope-ratio monitoring. The method requires small amounts of air ( approximately 300 mL STP), is operated on-line, and comprises four steps: (1). the condensation of the air matrix at approximately 40 K; (2). the collection of the non-condensed components of the air sample (H(2), Ne, He, and traces of N(2)) in a 5 A molecular sieves pre-concentration trap at approximately 63 K; (3). gas chromatographic purification of H(2) in a flow of He; and (4) quantification of the D/H ratio in an isotope-ratio mass spectrometer. The precision of the determination of the D/H ratio is better than 2 per thousand, which is comparable to, or better than, that obtained by conventional duel-inlet off-line analysis. There are, however, discrepancies relative to the D/H ratios determined by conventional duel-inlet analysis. This is due to differences in peak shape between reference and sample air, depending on the amount of H(2) injected. Consequently, calibration runs are required. After the calibration of the system, we obtained an accuracy of 1.5 per thousand, so that the accumulated uncertainty is estimated to be less than 4 per thousand. The method also allows determination of the H(2) concentration, with an uncertainty estimated to be 2%.


Asunto(s)
Atmósfera/química , Deuterio/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Calibración , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Reproducibilidad de los Resultados
7.
Anal Bioanal Chem ; 378(2): 256-69, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14569420

RESUMEN

A mass spectrometric method to determine the absolute intramolecular (position-dependent) nitrogen isotope ratios of nitrous oxide (N2O) has been developed. It is based on the addition of different amounts of doubly labeled 15N2O to an N2O sample of the isotope ratio mass spectrometer reference gas, and subsequent measurement of the relative ion current ratios of species with mass 30, 31, 44, 45, and 46. All relevant quantities are measured by isotope ratio mass spectrometers, which means that the machines' inherent high precision of the order of 10(-5) can be fully exploited. External determination of dilution factors with generally lower precision is avoided. The method itself can be implemented within a day, but a calibration of the oxygen and average nitrogen isotope ratios relative to a primary isotopic reference material of known absolute isotopic composition has to be performed separately. The underlying theoretical framework is explored in depth. The effect of interferences due to 14N15N16O and 15N14N16O in the 15N2O sample and due to 15N2+ formation are fully accounted for in the calculation of the final position-dependent nitrogen isotope ratios. Considering all known statistical uncertainties of measured quantities and absolute isotope ratios of primary isotopic reference materials, we achieve an overall uncertainty of 0.9 per thousand (1 sigma). Using tropospheric N2O as common reference point for intercomparison purposes, we find a substantially higher relative enrichment of 15N at the central nitrogen atom over 15N at the terminal nitrogen atom than measured previously for tropospheric N2O based on a chemical conversion method: 46.3 +/- 1.4 per thousand as opposed to 18.7 +/- 2.2 per thousand. However, our method depends critically on the absolute isotope ratios of the primary isotopic reference materials air-N2 and VSMOW. If they are systematically wrong, our estimates will also necessarily be incorrect.

8.
Rapid Commun Mass Spectrom ; 17(16): 1897-908, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12876691

RESUMEN

We describe an automated gas chromatography/isotope-ratio mass spectrometry (GC/IRMS) method for the determination of the (18)O and position-resolved (15)N content of nitrous oxide at natural isotope abundance. The position information is obtained from successive measurement of the isotopic composition of the N(2)O(+) ion at m/z 44, 45, 46 and the NO(+) fragment ion at m/z 30, 31. The fragment ion analysis is complicated by a non-linearity in the mass spectrometer that has to be taken into account. Evaluation of the absolute peak areas allows for a simultaneous determination of the N(2)O mixing ratio for atmospheric samples. Samples with mixing ratios ranging from a few nmol/mol up to the percent level can be analyzed using different sample inlet systems. The high concentration inlet system provides an easy and quick method to carry out various diagnostic tests, in particular to perform realistic linearity tests. A gas chromatographic set-up with a split column and a backflush possibility improves analytical precision and excludes interferences by substances with long retention times from preceding runs. We also describe a new open split interface that uses only a single transfer capillary to the mass spectrometer for sample and reference gas.


Asunto(s)
Aire/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Óxido Nitroso/análisis , Isótopos de Nitrógeno , Óxido Nitroso/química , Isótopos de Oxígeno
9.
Rapid Commun Mass Spectrom ; 17(10): 1007-16, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12720280

RESUMEN

To calculate delta(13)C from raw CO(2) isotope data, the ion beam ratio of m/z 45 to 44 is corrected for the contribution arising from the contribution of (17)O-bearing molecules. First, a review on the current state of (17)O-corrections for CO(2) mass spectrometry is presented. The three correction algorithms that are generally in use, however, do produce biased delta(13)C values, and the bias is actually larger than the precision of modern isotope ratio mass spectrometers. The origin of this bias is twofold: different values for (17)R(VPDB-CO2) as well as different values for lambda are used in the correction algorithms. Despite both values being of high importance, large discrepancies between the absolute values published for (17)R(VPDB-CO2) appear to be the main reason for the delta(13)C biases. Next, the question of how to choose the value of lambda to best be used is considered. Natural (e.g. tropospheric) CO(2) as well as primary reference materials (PDB and NBS-19), having been in isotope exchange with water, are assumed to lie on the fractionation line for waters. On this ground, lambda = 0.5281 +/- 0.0015, as determined for waters (Meijer and Li, Isot. Environ. Health Stud., 1998; 34: 349-369), is suggested to be a base for the (17)O-correction algorithm. Finally, an approach to determine the absolute value for (17)R(VPDB-CO2), based on data of relative isotope measurements on two CO(2) gases having a large (17)O difference, is discussed and algebraic formulas are considered. Experimental data and new numerical values determined for (17)R(VPDB-CO2) and (17)R(VSMOW) are given in a companion paper.

10.
Rapid Commun Mass Spectrom ; 17(10): 1017-29, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12720281

RESUMEN

In a companion paper in this issue we presented a review of the current state of (17)O-corrections for CO(2) mass spectrometry and considered an approach (including algebraic formulae) of how to determine absolute values for (17)R(VPDB-CO2) and (17)R(VSMOW). Here we present the results of experiments conducted to determine these values. Two oxygen gases (one depleted in heavy isotopes and the other isotopically normal oxygen) were analysed to obtain the relative (17)O content. Samples of both gases were converted into CO(2), and the resulting CO(2) samples were analysed as well. Possible experimental and analytical errors are carefully considered and eliminated as far as feasible. Much attention was paid to understanding and dealing with cross-contamination effects occurring in the mass spectrometer. Based on the data obtained, the absolute values are calculated to be: (17)R(VPDB-CO2) = 0.00039511 +/- 0.00000094 and (17)R(VSMOW) = 0.00038672 +/- 0.00000087 (expanded uncertainties). Both values are on the original scale of Craig (Geochim. Cosmochim. Acta 1957; 12: 133-149) with (13)R(VPDB-CO2) = 0.0112372. A (17)O-correction algorithm incorporating the newly determined value for (17)R(VPDB-CO2) and lambda = 0.528 by Meijer and Li (Isot. Environ. Health Stud. 1998; 34: 349-369) is constructed. A computational test is performed to demonstrate the degree of delta(13)C bias relative to the previously known correction algorithms. delta(13)C values produced by the constructed algorithm are in the middle of the values produced by the other algorithms. We refrain, however, from giving any recommendation concerning which (17)O-correction algorithm to use in order to obtain delta(13)C data in the most accurate way. The present work illuminates the need to reconsider recommendations concerning the correction algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...