Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691404

RESUMEN

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Asunto(s)
Radiología , Radiología/métodos , Radiología/estadística & datos numéricos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
2.
JAMA ; 331(15): 1320-1321, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38497956

RESUMEN

This study compares 2 large language models and their performance vs that of competing open-source models.


Asunto(s)
Inteligencia Artificial , Diagnóstico por Imagen , Anamnesis , Lenguaje
3.
Curr Opin Rheumatol ; 36(4): 267-273, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533807

RESUMEN

PURPOSE OF REVIEW: To evaluate the current applications and prospects of artificial intelligence and machine learning in diagnosing and managing axial spondyloarthritis (axSpA), focusing on their role in medical imaging, predictive modelling, and patient monitoring. RECENT FINDINGS: Artificial intelligence, particularly deep learning, is showing promise in diagnosing axSpA assisting with X-ray, computed tomography (CT) and MRI analyses, with some models matching or outperforming radiologists in detecting sacroiliitis and markers. Moreover, it is increasingly being used in predictive modelling of disease progression and personalized treatment, and could aid risk assessment, treatment response and clinical subtype identification. Variable study designs, sample sizes and the predominance of retrospective, single-centre studies still limit the generalizability of results. SUMMARY: Artificial intelligence technologies have significant potential to advance the diagnosis and treatment of axSpA, providing more accurate, efficient and personalized healthcare solutions. However, their integration into clinical practice requires rigorous validation, ethical and legal considerations, and comprehensive training for healthcare professionals. Future advances in artificial intelligence could complement clinical expertise and improve patient care through improved diagnostic accuracy and tailored therapeutic strategies, but the challenge remains to ensure that these technologies are validated in prospective multicentre trials and ethically integrated into patient care.


Asunto(s)
Inteligencia Artificial , Espondiloartritis Axial , Aprendizaje Automático , Humanos , Espondiloartritis Axial/diagnóstico , Aprendizaje Profundo , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos
5.
J Pathol ; 262(3): 310-319, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38098169

RESUMEN

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload. In this study, we hypothesised that large language models (LLMs), such as the generative pre-trained transformer 4 (GPT-4), can extract structured data from unstructured plain language reports using a zero-shot approach without requiring any re-training. We tested this hypothesis by utilising GPT-4 to extract information from histopathological reports, focusing on two extensive sets of pathology reports for colorectal cancer and glioblastoma. We found a high concordance between LLM-generated structured data and human-generated structured data. Consequently, LLMs could potentially be employed routinely to extract ground truth data for machine learning from unstructured pathology reports in the future. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Glioblastoma , Medicina de Precisión , Humanos , Aprendizaje Automático , Reino Unido
6.
Acta Radiol Open ; 12(10): 20584601231213740, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38034076

RESUMEN

Background: The growing role of artificial intelligence (AI) in healthcare, particularly radiology, requires its unbiased and fair development and implementation, starting with the constitution of the scientific community. Purpose: To examine the gender and country distribution among academic editors in leading computer science and AI journals. Material and Methods: This cross-sectional study analyzed the gender and country distribution among editors-in-chief, senior, and associate editors in all 75 Q1 computer science and AI journals in the Clarivate Journal Citations Report and SCImago Journal Ranking 2022. Gender was determined using an open-source algorithm (Gender Guesser™), selecting the gender with the highest calibrated probability. Result: Among 4,948 editorial board members, women were underrepresented in all positions (editors-in-chief/senior editors/associate editors: 14%/18%/17%). The proportion of women correlated positively with the SCImago Journal Rank indicator (ρ = 0.329; p = .004). The U.S., the U.K., and China comprised 50% of editors, while Australia, Finland, Estonia, Denmark, the Netherlands, the U.K., Switzerland, and Slovenia had the highest women editor representation per million women population. Conclusion: Our results highlight gender and geographic disparities on leading computer science and AI journal editorial boards, with women being underrepresented in all positions and a disproportional relationship between the Global North and South.

7.
Joint Bone Spine ; 91(3): 105651, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37797827

RESUMEN

Rheumatic disorders present a global health challenge, marked by inflammation and damage to joints, bones, and connective tissues. Accurate, timely diagnosis and appropriate management are crucial for favorable patient outcomes. Magnetic resonance imaging (MRI) has become indispensable in rheumatology, but interpretation remains laborious and variable. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), offers a means to improve and advance MRI analysis. This review examines current AI applications in rheumatology MRI analysis, addressing diagnostic support, disease classification, activity assessment, and progression monitoring. AI demonstrates promise, with high sensitivity, specificity, and accuracy, achieving or surpassing expert performance. The review also discusses clinical implementation challenges and future research directions to enhance rheumatic disease diagnosis and management.

8.
Med Sci Educ ; 33(4): 1007-1012, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37546190

RESUMEN

The increasing use of artificial intelligence (AI) in medicine is associated with new ethical challenges and responsibilities. However, special considerations and concerns should be addressed when integrating AI applications into medical education, where healthcare, AI, and education ethics collide. This commentary explores the biomedical ethical responsibilities of medical institutions in incorporating AI applications into medical education by identifying potential concerns and limitations, with the goal of implementing applicable recommendations. The recommendations presented are intended to assist in developing institutional guidelines for the ethical use of AI for medical educators and students.

10.
Comput Methods Programs Biomed ; 234: 107505, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37003043

RESUMEN

BACKGROUND AND OBJECTIVES: Bedside chest radiographs (CXRs) are challenging to interpret but important for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artificial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs. METHODS: To improve the efficiency of the segmentation process, we introduced a "human-in-the-loop" segmentation workflow with an active learning approach, looking at five major anatomical structures in the chest (heart, lungs, mediastinum, trachea, and clavicles). This allowed us to decrease the time needed for segmentation by 32% and select the most complex cases to utilize human expert annotators efficiently. After annotation of 2,000 CXRs from different Level 1 medical centers at Charité - University Hospital Berlin, there was no relevant improvement in model performance, and the annotation process was stopped. A 5-layer U-ResNet was trained for 150 epochs using a combined soft Dice similarity coefficient (DSC) and cross-entropy as a loss function. DSC, Jaccard index (JI), Hausdorff distance (HD) in mm, and average symmetric surface distance (ASSD) in mm were used to assess model performance. External validation was performed using an independent external test dataset from Aachen University Hospital (n = 20). RESULTS: The final training, validation, and testing dataset consisted of 1900/50/50 segmentation masks for each anatomical structure. Our model achieved a mean DSC/JI/HD/ASSD of 0.93/0.88/32.1/5.8 for the lung, 0.92/0.86/21.65/4.85 for the mediastinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for the trachea, and 0.88/0.8/31.74/8.73 for the heart. Validation using the external dataset showed an overall robust performance of our algorithm. CONCLUSIONS: Using an efficient computer-aided segmentation method with active learning, our anatomy-based model achieves comparable performance to state-of-the-art approaches. Instead of only segmenting the non-overlapping portions of the organs, as previous studies did, a closer approximation to actual anatomy is achieved by segmenting along the natural anatomical borders. This novel anatomy approach could be useful for developing pathology models for accurate and quantifiable diagnosis.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Inteligencia Artificial , Redes Neurales de la Computación , Tórax
12.
J Med Internet Res ; 25: e43110, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927634

RESUMEN

Generative models, such as DALL-E 2 (OpenAI), could represent promising future tools for image generation, augmentation, and manipulation for artificial intelligence research in radiology, provided that these models have sufficient medical domain knowledge. Herein, we show that DALL-E 2 has learned relevant representations of x-ray images, with promising capabilities in terms of zero-shot text-to-image generation of new images, the continuation of an image beyond its original boundaries, and the removal of elements; however, its capabilities for the generation of images with pathological abnormalities (eg, tumors, fractures, and inflammation) or computed tomography, magnetic resonance imaging, or ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if the further fine-tuning and adaptation of these models to their respective domains are required first.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Ultrasonografía
14.
Cancers (Basel) ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36428569

RESUMEN

Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.

15.
Data Brief ; 45: 108739, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426089

RESUMEN

In the present work, we present a publicly available, expert-segmented representative dataset of 158 3.0 Tesla biparametric MRIs [1]. There is an increasing number of studies investigating prostate and prostate carcinoma segmentation using deep learning (DL) with 3D architectures [2], [3], [4], [5], [6], [7]. The development of robust and data-driven DL models for prostate segmentation and assessment is currently limited by the availability of openly available expert-annotated datasets [8], [9], [10]. The dataset contains 3.0 Tesla MRI images of the prostate of patients with suspected prostate cancer. Patients over 50 years of age who had a 3.0 Tesla MRI scan of the prostate that met PI-RADS version 2.1 technical standards were included. All patients received a subsequent biopsy or surgery so that the MRI diagnosis could be verified/matched with the histopathologic diagnosis. For patients who had undergone multiple MRIs, the last MRI, which was less than six months before biopsy/surgery, was included. All patients were examined at a German university hospital (Charité Universitätsmedizin Berlin) between 02/2016 and 01/2020. All MRI were acquired with two 3.0 Tesla MRI scanners (Siemens VIDA and Skyra, Siemens Healthineers, Erlangen, Germany). Axial T2W sequences and axial diffusion-weighted sequences (DWI) with apparent diffusion coefficient maps (ADC) were included in the data set. T2W sequences and ADC maps were annotated by two board-certified radiologists with 6 and 8 years of experience, respectively. For T2W sequences, the central gland (central zone and transitional zone) and peripheral zone were segmented. If areas of suspected prostate cancer (PIRADS score of ≥ 4) were identified on examination, they were segmented in both the T2W sequences and ADC maps. Because restricted diffusion is best seen in DWI images with high b-values, only these images were selected and all images with low b-values were discarded. Data were then anonymized and converted to NIfTI (Neuroimaging Informatics Technology Initiative) format.

16.
Diagnostics (Basel) ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359504

RESUMEN

For computed tomography (CT), representing the diagnostic standard for trauma patients, image quality is essential. The positioning of the patient's arms next to the abdomen causes artifacts and is also considered to increase radiation exposure. The aim of this study was to evaluate the effect of various positionings during different CT examination steps on the extent of artifacts as well as radiation dose using iterative reconstruction (IR). 354 trauma-CTs were analyzed retrospectively. All datasets were reconstructed using IR and three different examination protocols were applied. Arm elevation led to a significant improvement of the image quality across all examination protocols (p < 0.001). Variation in arm positioning during image acquisition did not lead to a reduction of radiation dose (p = 0.123). Only elevation during scout acquisition resulted in the reduction of radiation exposure (p < 0.001). To receive high-quality CT images, patients should be placed with elevated arms for the trunk scan, as artifacts remain even with the IR. Arm repositioning during the examination itself had no effect on the applied radiation dose because its modulation refers to the initial scout obtained. In order to achieve a dose effect by different positioning, a two-scout protocol (dual scout) should be used.

17.
Radiology ; 305(3): 655-665, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35943339

RESUMEN

Background MRI is frequently used for early diagnosis of axial spondyloarthritis (axSpA). However, evaluation is time-consuming and requires profound expertise because noninflammatory degenerative changes can mimic axSpA, and early signs may therefore be missed. Deep neural networks could function as assistance for axSpA detection. Purpose To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA. Materials and Methods This retrospective multicenter study included MRI examinations of five cohorts of patients with clinical suspicion of axSpA collected at university and community hospitals between January 2006 and September 2020. Data from four cohorts were used as the training set, and data from one cohort as the external test set. Each MRI examination in the training and test sets was scored by six and seven raters, respectively, for inflammatory changes (bone marrow edema, enthesitis) and structural changes (erosions, sclerosis). A deep learning tool to detect changes indicative of axSpA was developed. First, a neural network to homogenize the images, then a classification network were trained. Performance was evaluated with use of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. P < .05 was considered indicative of statistically significant difference. Results Overall, 593 patients (mean age, 37 years ± 11 [SD]; 302 women) were studied. Inflammatory and structural changes were found in 197 of 477 patients (41%) and 244 of 477 (51%), respectively, in the training set and 25 of 116 patients (22%) and 26 of 116 (22%) in the test set. The AUCs were 0.94 (95% CI: 0.84, 0.97) for all inflammatory changes, 0.88 (95% CI: 0.80, 0.95) for inflammatory changes fulfilling the Assessment of SpondyloArthritis international Society definition, and 0.89 (95% CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients (88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients (78%) for structural changes. Conclusion Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial spondyloarthritis at MRI. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Espondiloartritis Axial , Aprendizaje Profundo , Espondiloartritis , Humanos , Femenino , Adulto , Articulación Sacroiliaca/diagnóstico por imagen , Espondiloartritis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
18.
Comput Biol Med ; 148: 105817, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841780

RESUMEN

BACKGROUND: The development of deep learning (DL) models for prostate segmentation on magnetic resonance imaging (MRI) depends on expert-annotated data and reliable baselines, which are often not publicly available. This limits both reproducibility and comparability. METHODS: Prostate158 consists of 158 expert annotated biparametric 3T prostate MRIs comprising T2w sequences and diffusion-weighted sequences with apparent diffusion coefficient maps. Two U-ResNets trained for segmentation of anatomy (central gland, peripheral zone) and suspicious lesions for prostate cancer (PCa) with a PI-RADS score of ≥4 served as baseline algorithms. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and the average surface distance (ASD). The Wilcoxon test with Bonferroni correction was used to evaluate differences in performance. The generalizability of the baseline model was assessed using the open datasets Medical Segmentation Decathlon and PROSTATEx. RESULTS: Compared to Reader 1, the models achieved a DSC/HD/ASD of 0.88/18.3/2.2 for the central gland, 0.75/22.8/1.9 for the peripheral zone, and 0.45/36.7/17.4 for PCa. Compared with Reader 2, the DSC/HD/ASD were 0.88/17.5/2.6 for the central gland, 0.73/33.2/1.9 for the peripheral zone, and 0.4/39.5/19.1 for PCa. Interrater agreement measured in DSC/HD/ASD was 0.87/11.1/1.0 for the central gland, 0.75/15.8/0.74 for the peripheral zone, and 0.6/18.8/5.5 for PCa. Segmentation performances on the Medical Segmentation Decathlon and PROSTATEx were 0.82/22.5/3.4; 0.86/18.6/2.5 for the central gland, and 0.64/29.2/4.7; 0.71/26.3/2.2 for the peripheral zone. CONCLUSIONS: We provide an openly accessible, expert-annotated 3T dataset of prostate MRI and a reproducible benchmark to foster the development of prostate segmentation algorithms.


Asunto(s)
Próstata , Neoplasias de la Próstata , Algoritmos , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos
20.
Acta Radiol Open ; 11(1): 20584601211073864, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35096416

RESUMEN

BACKGROUND: During the ongoing global SARS-CoV-2 pandemic, there is a high demand for quick and reliable methods for early identification of infected patients. Due to its widespread availability, chest-CT is commonly used to detect early pulmonary manifestations and for follow-ups. PURPOSE: This study aims to analyze image quality and reproducibility of readings of scans using low-dose chest CT protocols in patients suspected of SARS-CoV-2 infection. MATERIALS AND METHODS: Two radiologists retrospectively analyzed 100 low-dose chest CT scans of patients suspected of SARS-CoV-2 infection using two protocols on devices from two vendors regarding image quality based on a Likert scale. After 3 weeks, quality ratings were repeated to allow for analysis of intra-reader in addition to the inter-reader agreement. Furthermore, radiation dose and presence as well as distribution of radiological features were noted. RESULTS: The exams' effective radiation doses were in median in the submillisievert range (median of 0.53 mSv, IQR: 0.35 mSv). While most scans were rated as being of optimal quality, 38% of scans were scored as suboptimal, yet only one scan was non-diagnostic. Inter-reader and intra-reader reliability showed almost perfect agreement with Cohen's kappa of 0.82 and 0.87. CONCLUSION: Overall, in this study, we present two protocols for submillisievert low-dose chest CT demonstrating appropriate or better image quality with almost perfect inter-reader and intra-reader agreement in patients suspected of SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...