Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Aujourdhui ; 214(3-4): 137-148, 2020.
Artículo en Francés | MEDLINE | ID: mdl-33357372

RESUMEN

Founded in 1919, the Society of Biology of Strasbourg (SBS) is a learned society whose purpose is the dissemination and promotion of scientific knowledge in biology. Subsidiary of the Society of Biology, the SBS celebrated its Centenary on Wednesday, the 16th of October 2019 on the Strasbourg University campus and at the Strasbourg City Hall. This day allowed retracing the various milestones of the SBS, through its main strengths, its difficulties and its permanent goal to meet scientific and societal challenges. The common thread of this day was the transmission of knowledge related to the past, the present, but also the future. At the start of the 21st century, the SBS must continue to reinvent itself to pursue its objective of transmitting scientific knowledge in biology and beyond. Scientific talks performed by senior scientists and former SBS thesis prizes awardees, a round table, and informal discussions reflected the history and the dynamism of the SBS association. All SBS Centennial participants have set the first milestone for the SBS Bicentennial.


TITLE: La Société de Biologie de Strasbourg : 100 ans au service de la science et de la société. ABSTRACT: Filiale de la Société de Biologie, la Société de Biologie de Strasbourg (SBS) est une société savante qui a pour objet la diffusion et la promotion du savoir scientifique en biologie et en médecine. Fondée en 1919, La SBS a célébré son Centenaire le mercredi 16 octobre 2019. Cette journée a permis de retracer les différents jalons de la SBS, à travers ses lignes de forces, ses difficultés et sa volonté permanente de mettre en exergue les défis scientifiques et sociétaux auxquels participent les recherches strasbourgeoises. Le fil rouge de cette journée a été la transmission d'un savoir en lien avec le passé, le présent, mais également le futur. En ce début du 21e siècle, la SBS se doit de continuer de se réinventer pour poursuivre son objectif de transmission des connaissances scientifiques en biologie et au-delà. L'ensemble des participants du Centenaire de la SBS a ainsi posé la première pierre du Bicentenaire de la SBS.


Asunto(s)
Biología , Sociedades Científicas , Biología/ética , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Conocimiento , Sociedades Científicas/historia
2.
Proc Natl Acad Sci U S A ; 108(7): 2783-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21270334

RESUMEN

The ADP ribosyl transferase [poly(ADP-ribose) polymerase] ARTD3(PARP3) is a newly characterized member of the ARTD(PARP) family that catalyzes the reaction of ADP ribosylation, a key posttranslational modification of proteins involved in different signaling pathways from DNA damage to energy metabolism and organismal memory. This enzyme shares high structural similarities with the DNA repair enzymes PARP1 and PARP2 and accordingly has been found to catalyse poly(ADP ribose) synthesis. However, relatively little is known about its in vivo cellular properties. By combining biochemical studies with the generation and characterization of loss-of-function human and mouse models, we describe PARP3 as a newcomer in genome integrity and mitotic progression. We report a particular role of PARP3 in cellular response to double-strand breaks, most likely in concert with PARP1. We identify PARP3 as a critical player in the stabilization of the mitotic spindle and in telomere integrity notably by associating and regulating the mitotic components NuMA and tankyrase 1. Both functions open stimulating prospects for specifically targeting PARP3 in cancer therapy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/genética , Mitosis/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Huso Acromático/fisiología , Adenosina Difosfato/metabolismo , Animales , Antígenos Nucleares/metabolismo , Western Blotting , Línea Celular Tumoral , Ensayo de Unidades Formadoras de Colonias , Ensayo Cometa , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente Indirecta , Inestabilidad Genómica/fisiología , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Espectrometría de Masas , Ratones , Ratones Noqueados , Microscopía por Video , Mitosis/fisiología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Poli(ADP-Ribosa) Polimerasas/deficiencia , Tanquirasas/metabolismo
3.
Nucleic Acids Res ; 37(10): 3177-88, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19305001

RESUMEN

Repair of single-stranded DNA breaks before DNA replication is critical in maintaining genomic stability; however, how cells deal with these lesions during S phase is not clear. Using combined approaches of proteomics and in vitro and in vivo protein-protein interaction, we identified the p58 subunit of DNA Pol alpha-primase as a new binding partner of XRCC1, a key protein of the single strand break repair (SSBR) complex. In vitro experiments reveal that the binding of poly(ADP-ribose) to p58 inhibits primase activity by competition with its DNA binding property. Overexpression of the XRCC1-BRCT1 domain in HeLa cells induces poly(ADP-ribose) synthesis, PARP-1 and XRCC1-BRCT1 poly(ADP-ribosyl)ation and a strong S phase delay in the presence of DNA damage. Addition of recombinant XRCC1-BRCT1 to Xenopus egg extracts slows down DNA synthesis and inhibits the binding of PCNA, but not MCM2 to alkylated chromatin, thus indicating interference with the assembly of functional replication forks. Altogether these results suggest a critical role for XRCC1 in connecting the SSBR machinery with the replication fork to halt DNA synthesis in response to DNA damage.


Asunto(s)
ADN Primasa/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Fase S/genética , Animales , Cromatina/metabolismo , ADN/biosíntesis , Daño del ADN , ADN Polimerasa I/metabolismo , ADN Primasa/química , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Xenopus laevis
4.
Genetics ; 180(1): 73-82, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18757916

RESUMEN

In yeast, Rad6-Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases eta or zeta or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities--a ubiquitin ligase that promotes Mms2-Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polzeta. Using duplex plasmids carrying different site-specific DNA lesions--an abasic site, a cis-syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct--we show that Rad5 is needed for Polzeta-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/fisiología , Dimerización , Genes Fúngicos , Luz , Modelos Biológicos , Modelos Genéticos , Nucleotidiltransferasas/metabolismo , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nucleic Acids Res ; 34(1): 32-41, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16397295

RESUMEN

The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein-protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP-ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Sitios de Unión , Cricetinae , Proteínas de Unión al ADN/química , Dimerización , Células HeLa , Humanos , Espectrometría de Masas , Fosforilación , Estructura Terciaria de Proteína , Radiación Ionizante , Serina/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
6.
EMBO J ; 21(14): 3881-7, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12110599

RESUMEN

Replication through (6-4)TT and G-AAF lesions was compared in Saccharomyces cerevisiae strains proficient and deficient for the RAD30-encoded DNA polymerase eta (Pol eta). In the RAD30 strain, the (6-4)TT lesion is replicated both inaccurately and accurately 60 and 40% of the time, respectively. Surprisingly, in a rad30 Delta strain, the level of mutagenic bypass is essentially suppressed, while error-free bypass remains unchanged. Therefore, Pol eta is responsible for mutagenic replication through the (6-4)TT photoproduct, while another polymerase mediates its error-free bypass. Deletion of the RAD30 gene also reduces the levels of both accurate and inaccurate bypass of AAF lesions within two different sequence contexts up to 8-fold. These data show that, in contrast to the accurate bypass by Pol eta of TT cyclobutane dimers, it is responsible for the mutagenic bypass of other lesions. In conclusion, this paper shows that, in yeast, translesion synthesis involves the combined action of several polymerases.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA