Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 224(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34412111

RESUMEN

Human bipedalism entails relatively short strides compared with facultatively bipedal primates. Unique non-sagittal-plane motions associated with bipedalism may account for part of this discrepancy. Pelvic rotation anteriorly translates the hip, contributing to bipedal stride length (i.e. the 'pelvic step'). Facultative bipedalism in non-human primates entails much larger pelvic rotation than in humans, suggesting that a larger pelvic step may contribute to their relatively longer strides. We collected data on the pelvic step in bipedal chimpanzees and over a wide speed range of human walking. At matched dimensionless speeds, humans have 26.7% shorter dimensionless strides, and a pelvic step 5.4 times smaller than bipedal chimpanzees. Differences in pelvic rotation explain 31.8% of the difference in dimensionless stride length between the two species. We suggest that relative stride lengths and the pelvic step have been significantly reduced throughout the course of hominin evolution.


Asunto(s)
Marcha , Caminata , Animales , Evolución Biológica , Fenómenos Biomecánicos , Humanos , Pan troglodytes , Pelvis
2.
Nature ; 587(7833): 258-263, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116307

RESUMEN

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.


Asunto(s)
Vías Nerviosas , Dolor/fisiopatología , Médula Espinal/citología , Médula Espinal/fisiología , Tacto/fisiología , Animales , Axones/metabolismo , Femenino , Masculino , Mecanotransducción Celular , Ratones , Filosofía , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Piel/inervación , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...