Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927040

RESUMEN

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.


Asunto(s)
Citrus , Suplementos Dietéticos , Modelos Animales de Enfermedad , Hesperidina , Resistencia a la Insulina , Síndrome Metabólico , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Hesperidina/farmacología , Estrés Oxidativo/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Masculino , Ratones , Citrus/química , Relación Dosis-Respuesta a Droga , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Antioxidantes/farmacología
2.
Sci Rep ; 13(1): 21644, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062083

RESUMEN

Obesity and vascular dysfunction are independent and sexually dimorphic risk factors for cardiovascular disease. A high fat diet (HFD) is often used to model obesity in mice, but the sex-specific effects of this diet on aortic inflammation and function are unclear. Therefore, we characterized the aortic immune cell profile and function in 6-week-old male and female C57BL/6 mice fed a normal chow diet (NCD) or HFD for 10 weeks. Metabolic parameters were measured weekly and fortnightly. At end point, aortic immune cell populations and endothelial function were characterized using flow cytometry and wire myography. HFD-male mice had higher bodyweight, blood cholesterol, fasting blood glucose and plasma insulin levels than NCD mice (P < 0.05). HFD did not alter systolic blood pressure (SBP), glycated hemoglobin or blood triglycerides in either sex. HFD-females had delayed increases in bodyweight with a transient increase in fasting blood glucose at week 8 (P < 0.05). Flow cytometry revealed fewer proinflammatory aortic monocytes in females fed a HFD compared to NCD. HFD did not affect aortic leukocyte populations in males. Conversely, HFD impaired endothelium-dependent vasorelaxation, but only in males. Overall, this highlights biological sex as a key factor determining vascular disease severity in HFD-fed mice.


Asunto(s)
Resistencia a la Insulina , Enfermedades no Transmisibles , Masculino , Femenino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Inflamación/metabolismo
3.
Front Immunol ; 13: 971048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248832

RESUMEN

Obesity is defined as the excessive accumulation of body fat and is associated with an increased risk of developing major health problems such as cardiovascular disease, diabetes and stroke. There are clear sexual dimorphisms in the epidemiology, pathophysiology and sequelae of obesity and its accompanying metabolic disorders, with females often better protected compared to males. This protection has predominantly been attributed to the female sex hormone estrogen and differences in fat distribution. More recently, the sexual dimorphisms of obesity have also been attributed to the differences in the composition and function of the gut microbiota, and the intestinal immune system. This review will comprehensively summarize the pre-clinical and clinical evidence for these sexual dimorphisms and discuss the interplay between sex hormones, intestinal inflammation and the gut microbiome in obesity. Major gaps and limitations of this rapidly growing area of research will also be highlighted in this review.


Asunto(s)
Hormonas Gastrointestinales , Microbioma Gastrointestinal , Estrógenos , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inflamación , Masculino , Obesidad , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...