Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Equity Health ; 21(1): 99, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854317

RESUMEN

BACKGROUND: Medical care for people with intellectual and developmental disabilities (IDD) is organized differently across the globe and interpretation of the concept of medical care for people with IDD may vary across countries. Existing models of medical care are not tailored to the specific medical care needs of people with IDD. This study aims to provide an improved understanding of which aspects constitute medical care for people with IDD by exploring how international researchers and practitioners describe this care, using concept mapping. METHODS: Twenty-five experts (researchers and practitioners) on medical care for people with IDD from 17 countries submitted statements on medical care in their country in a brainstorming session, using an online concept mapping tool. Next, they sorted all collected statements and rated them on importance. RESULTS: Participants generated statements that reflect current medical and health care practice, their ideas on good practice, and aspirations for future medical and health care for people with IDD. Based on the sorting of all statements, a concept map was formed, covering 13 aspects that characterize medical and health care for people with IDD across nations. The 13 aspects varied minimally in importance ratings and were grouped into five overarching conceptual themes: (i) active patient role, (ii) provider role, (iii) context of care, (iv) consequences of care for people with IDD, and (v) quality of care. CONCLUSIONS: The themes, clusters and statements identified through this explorative study provide additional content and context for the specific patient group of people with IDD to the dimensions of previous models of medical care.


Asunto(s)
Discapacidad Intelectual , Atención a la Salud , Humanos , Discapacidad Intelectual/terapia , Atención al Paciente
2.
mBio ; 13(4): e0163022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862786

RESUMEN

Analysis of the genes retained in the minimized Mycoplasma JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool. Finally, we combined metabolomics and cheminformatics approaches to extend the core metabolic map of JCVI-Syn3A to include promiscuous enzymatic reactions and spontaneous side reactions. This extension revealed that several key metabolite damage control systems remain to be identified in JCVI-Syn3A, such as that for methylglyoxal. IMPORTANCE Metabolite damage and repair mechanisms are being increasingly recognized. We present here compelling genetic and biochemical evidence for the universal importance of these mechanisms by demonstrating that stripping a genome down to its barest essentials leaves metabolite damage control systems in place. Furthermore, our metabolomic and cheminformatic results point to the existence of a network of metabolite damage and damage control reactions that extends far beyond the corners of it that have been characterized so far. In sum, there can be little room left to doubt that metabolite damage and the systems that counter it are mainstream metabolic processes that cannot be separated from life itself.


Asunto(s)
Genoma Bacteriano , Metabolómica , Metabolómica/métodos , Oxidorreductasas
4.
PLoS Comput Biol ; 17(11): e1009522, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748535

RESUMEN

Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.


Asunto(s)
Redes y Vías Metabólicas/genética , Modelos Biológicos , Adipocitos/metabolismo , Algoritmos , Aminoácidos de Cadena Ramificada/metabolismo , Ciclo del Ácido Cítrico , Biología Computacional , Simulación por Computador , Ácidos Grasos/metabolismo , Genoma Humano , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Análisis de Flujos Metabólicos/estadística & datos numéricos , Modelos Genéticos , Obesidad/genética , Obesidad/metabolismo , Análisis de Componente Principal
5.
Front Mol Biosci ; 6: 130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850364

RESUMEN

JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493 genes. For this slow growing minimal cell with a 105 min doubling time, we recently established the essential metabolism including the transport of required nutrients from the environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding genes, 143 are assigned to metabolism and 212 are assigned to genetic information processing. Using genome-wide proteomics and experimentally measured kinetic parameters from the literature we present here kinetic models for the genetic information processes of DNA replication, replication initiation, transcription, and translation which are solved stochastically and averaged over 1,000 replicates/cells. The model predicts the time required for replication initiation and DNA replication to be 8 and 50 min on average respectively and the number of proteins and ribosomal components to be approximately doubled in a cell cycle. The model of genetic information processing when combined with the essential metabolic and cell growth networks will provide a powerful platform for studying the fundamental principles of life.

6.
Proc Natl Acad Sci U S A ; 116(9): 3425-3430, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755526

RESUMEN

The bacterium Shewanella oneidensis has evolved a sophisticated electron transfer (ET) machinery to export electrons from the cytosol to extracellular space during extracellular respiration. At the heart of this process are decaheme proteins of the Mtr pathway, MtrC and MtrF, located at the external face of the outer bacterial membrane. Crystal structures have revealed that these proteins bind 10 c-type hemes arranged in the peculiar shape of a staggered cross that trifurcates the electron flow, presumably to reduce extracellular substrates while directing electrons to neighboring multiheme cytochromes at either side along the membrane. Especially intriguing is the design of the heme junctions trifurcating the electron flow: they are made of coplanar and T-shaped heme pair motifs with relatively large and seemingly unfavorable tunneling distances. Here, we use electronic structure calculations and molecular simulations to show that the side chains of the heme rings, in particular the cysteine linkages inserting in the space between coplanar and T-shaped heme pairs, strongly enhance electronic coupling in these two motifs. This results in an [Formula: see text]-fold speedup of ET steps at heme junctions that would otherwise be rate limiting. The predicted maximum electron flux through the solvated proteins is remarkably similar for all possible flow directions, suggesting that MtrC and MtrF shuttle electrons with similar efficiency and reversibly in directions parallel and orthogonal to the outer membrane. No major differences in the ET properties of MtrC and MtrF are found, implying that the different expression levels of the two proteins during extracellular respiration are not related to redox function.


Asunto(s)
Grupo Citocromo c/genética , Transporte de Electrón/genética , Modelos Moleculares , Shewanella/genética , Secuencia de Aminoácidos/genética , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Grupo Citocromo c/química , Citocromos/química , Citocromos/genética , Electrones , Hemo/química , Hemo/genética , Oxidación-Reducción , Shewanella/química , Shewanella/patogenicidad
7.
Elife ; 82019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30657448

RESUMEN

JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism.


One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating 'minimal bacterial cells'. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive ­ in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.


Asunto(s)
Genes Esenciales , Genoma Bacteriano , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Adenosina Trifosfato/química , Simulación por Computador , Elementos Transponibles de ADN , Escherichia coli , Ácido Fólico/metabolismo , Cinética , Sustancias Macromoleculares , Mutagénesis , Proteómica
9.
J Am Chem Soc ; 139(48): 17237-17240, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29119787

RESUMEN

Multi-heme proteins have attracted much attention recently due to their prominent role in mediating extracellular electron transport (ET), but one of their key fundamental properties, the rate constants for ET between the constituent heme groups, have so far evaded experimental determination. Here we report the set of heme-heme theoretical ET rate constants that define electron flow in the tetra-heme protein STC by combining a novel projector-operator diabatization approach for electronic coupling calculation with molecular dynamics simulation of ET free energies. On the basis of our calculations, we find that the protein limited electron flux through STC in the thermodynamic downhill direction (heme 1→4) is ∼3 × 106 s-1. We find that cysteine linkages inserting in the space between the two terminal heme pairs 1-2 and 3-4 significantly enhance the overall electron flow, by a factor of about 37, due to weak mixing of the sulfur 3p orbital with the Fe-heme d orbitals. While the packing density model, and to a higher degree, the pathway model of biological ET partly capture the predicted rate enhancements, our study highlights the importance of the atomistic and chemical nature of the tunneling medium at short biological tunneling distances. Cysteine linkages are likely to enhance electron flow also in the larger deca-heme proteins MtrC and MtrF, where heme-heme motifs with sub-optimal edge-to-edge distances are used to shuttle electrons in multiple directions.


Asunto(s)
Cisteína/metabolismo , Transporte de Electrón , Electrones , Hemoproteínas/química , Hemoproteínas/metabolismo , Modelos Moleculares , Termodinámica
10.
Biophys J ; 109(12): 2614-2624, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682818

RESUMEN

Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as "extracellular respiration". Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (Kd) = 490 µM, in good agreement with recent experimental estimates, Kd = 255 µM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration.


Asunto(s)
Grupo Citocromo c/metabolismo , Flavinas/metabolismo , Hemo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Shewanella , Grupo Citocromo c/química , Enlace de Hidrógeno , Unión Proteica , Conformación Proteica , Termodinámica
11.
J R Soc Interface ; 12(102): 20141117, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25411412

RESUMEN

Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.


Asunto(s)
Citocromos/química , Hemo/química , Shewanella/metabolismo , Secuencias de Aminoácidos , Biotecnología , Simulación por Computador , Citoplasma/metabolismo , Electrodos , Transporte de Electrón , Compuestos Férricos/química , Histidina/química , Ligandos , Modelos Moleculares , Oxidación-Reducción , Péptidos/química , Mapeo de Interacción de Proteínas , Espectrofotometría , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Proc Natl Acad Sci U S A ; 111(2): 611-6, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24385579

RESUMEN

The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently, microorganisms have adapted multiheme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Å. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level, how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces efficiently, remains a mystery thus far inaccessible to experiment. To shed light on this critical topic, we carried out extensive quantum mechanics/molecular mechanics simulations to calculate stepwise heme-to-heme electron transfer rates in the recently crystallized outer membrane deca-heme cytochrome MtrF. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 10(4)-10(5) s(-1), consistent with recently measured rates for the related multiheme protein complex MtrCAB. Intriguingly, our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: thermodynamically uphill steps occur only between electronically well-connected stacked heme pairs. This observation suggests that the protein evolved to harbor low-potential hemes without slowing down electron flow. These findings are particularly profound in light of the apparently well-conserved staggered cross-heme wire structural motif in functionally related outer membrane proteins.


Asunto(s)
Citocromos/química , Transporte de Electrón , Hemo/química , Modelos Químicos , Modelos Moleculares , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Termodinámica
13.
J Chem Theory Comput ; 10(10): 4653-60, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26588156

RESUMEN

Simulation of charge transport in organic semiconducting materials requires the development of strategies for very fast yet accurate estimation of electronic coupling matrix elements for electron transfer between organic molecules (transfer integrals, Hab). A well-known relation that is often exploited for this purpose is the approximately linear dependence of electronic coupling with respect to the overlap of the corresponding diabatic state wave functions for a given donor-acceptor pair. Here we show that a single such relation can be established for a large number of different π-conjugated organic molecules. In our computational scheme the overlap of the diabatic state wave function is simply estimated by the overlap of the highest singly occupied molecular orbital of donor and acceptor, projected on a minimum valence shell Slater-type orbital (STO) basis with optimized Slater decay coefficients. After calibration of the linear relation, the average error in Hab as obtained from the STO orbital overlap is a factor of 1.9 with respect to wave function-theory validated DFT calculations for a diverse set of π-conjugated organic dimers including small arenes, arenes with S, N, and O heteroatoms, acenes, porphins, and buckyballs. The crucial advantage of the scheme is that the STO orbital overlap calculation is analytic. This leads to speedups of 6 orders of magnitude with respect to reference DFT calculations, with little loss of accuracy in the regime relevant to charge transport in organics.

14.
Biochem Soc Trans ; 40(6): 1198-203, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23176454

RESUMEN

The free energy profile for electron flow through the bacterial decahaem cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help to validate the method and results, because differences in the profiles can be related to differences in the charged amino acids local to specific haem groups. First estimates of reorganization free energies λ yield a range consistent with expectations for partially solvent-exposed cofactors, and reveal an activation energy range surmountable for electron flow. Future work will aim at increasing the accuracy of λ with polarizable forcefield dynamics and quantum chemical energy gap calculations, as well as quantum chemical computation of electronic coupling matrix elements.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Citocromos/química , Shewanella/metabolismo , Transporte de Electrón , Hemo/química , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Termodinámica
15.
J Am Chem Soc ; 134(24): 9868-71, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22663092

RESUMEN

Electron-transporting multi-heme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron transport along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the redox potentials of the 10 hemes of MtrF in aqueous solution. We find that as a whole they fall within a range of ~0.3 V, in agreement with experiment. Individual redox potentials give rise to a free energy profile for electron transport that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains, suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor.


Asunto(s)
Grupo Citocromo c/química , Hemo/química , Simulación de Dinámica Molecular , Shewanella/enzimología , Transporte de Electrón , Oxidación-Reducción , Shewanella/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...