Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Malar J ; 21(1): 360, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457056

RESUMEN

BACKGROUND: Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS: In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS: Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS: Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Embarazo , Femenino , Humanos , Plasmodium falciparum , Brasil/epidemiología , Plasmodium vivax , Mujeres Embarazadas , Estudios Prospectivos , Antígenos de Protozoos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Antígenos de Superficie
2.
Commun Biol ; 5(1): 168, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217695

RESUMEN

The CYP2D6 enzyme is estimated to metabolize 25% of commonly used pharmaceuticals and is of intense pharmacogenetic interest due to the polymorphic nature of the CYP2D6 gene. Accurate allele typing of CYP2D6 has proved challenging due to frequent copy number variants (CNVs) and paralogous pseudogenes. SNP-arrays, qPCR and short-read sequencing have been employed to interrogate CYP2D6, however these technologies are unable to capture longer range information. Long-read sequencing using the PacBio Single Molecule Real Time (SMRT) sequencing platform has yielded promising results for CYP2D6 allele typing. However, previous studies have been limited in scale and have employed nascent data processing pipelines. We present a robust data processing pipeline "PLASTER" for accurate allele typing of SMRT sequenced amplicons. We demonstrate the pipeline by typing CYP2D6 alleles in a large cohort of 377 Solomon Islanders. This pharmacogenetic method will improve drug safety and efficacy through screening prior to drug administration.


Asunto(s)
Citocromo P-450 CYP2D6 , Variaciones en el Número de Copia de ADN , Alelos , Secuencia de Bases , Citocromo P-450 CYP2D6/genética , Humanos , Análisis de Secuencia de ADN/métodos
3.
Front Microbiol ; 12: 643501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276583

RESUMEN

Thailand is aiming for malaria elimination by the year 2030. However, the high proportion of asymptomatic infections and the presence of the hidden hypnozoite stage of Plasmodium vivax are impeding these efforts. We hypothesized that a validated surveillance tool utilizing serological markers of recent exposure to P. vivax infection could help to identify areas of ongoing transmission. The objective of this exploratory study was to assess the ability of P. vivax serological exposure markers to detect residual transmission "hot-spots" in Western Thailand. Total IgG levels were measured against a panel of 23 candidate P. vivax serological exposure markers using a multiplexed bead-based assay. A total of 4,255 plasma samples from a cross-sectional survey conducted in 2012 of endemic areas in the Kanchanaburi and Ratchaburi provinces were assayed. We compared IgG levels with multiple epidemiological factors that are associated with an increased risk of P. vivax infection in Thailand, including age, gender, and spatial location, as well as Plasmodium infection status itself. IgG levels to all proteins were significantly higher in the presence of a P. vivax infection (n = 144) (T-test, p < 0.0001). Overall seropositivity rates varied from 2.5% (PVX_097625, merozoite surface protein 8) to 16.8% (PVX_082670, merozoite surface protein 7), with 43% of individuals seropositive to at least 1 protein. Higher IgG levels were associated with older age (>18 years, p < 0.05) and males (17/23 proteins, p < 0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of eight previously validated P. vivax proteins. Spatial clustering was observed at the village and regional level, with a moderate correlation between PCR prevalence and sero-prevalence as predicted by the algorithm. Our data provides proof-of-concept for application of such surrogate markers as evidence of recent exposure in low transmission areas. These data can be used to better identify geographical areas with asymptomatic infection burdens that can be targeted in elimination campaigns.

4.
Open Forum Infect Dis ; 8(6): ofab228, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34159216

RESUMEN

To achieve malaria elimination, new tools are required to explicitly target Plasmodium vivax. Recently, a novel panel of P. vivax proteins were identified and validated as serological markers for detecting recent exposure to P. vivax within the last 9 months. In order to improve the sensitivity and specificity of these markers, immunoglobulin M (IgM) in addition to immunoglobulin G (IgG) antibody responses were compared with a down-selected panel of 20 P. vivax proteins. IgM was tested using archival plasma samples from observational cohort studies conducted in malaria-endemic regions of Thailand and Brazil. IgM responses to these proteins generally had poorer classification performance than IgG.

5.
PLoS Negl Trop Dis ; 15(2): e0009165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591976

RESUMEN

BACKGROUND: Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. METHODOLOGY: We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. PRINCIPAL FINDINGS: Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. CONCLUSIONS: In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.


Asunto(s)
Biomarcadores/sangre , Malaria Vivax/diagnóstico , Pruebas Serológicas/métodos , Formación de Anticuerpos , Brasil/epidemiología , Estudios de Cohortes , Humanos , Inmunoglobulina G/sangre , Estudios Longitudinales , Malaria Vivax/sangre , Malaria Vivax/epidemiología , Malaria Vivax/inmunología , Perú/epidemiología , Plasmodium vivax , Prevalencia , Pruebas Serológicas/normas , Tailandia/epidemiología
6.
PLoS One ; 15(12): e0238010, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33275613

RESUMEN

Multiplexed bead-based assays that use Luminex® xMAP® technology have become popular for measuring antibodies against proteins of interest in many fields, including malaria and more recently SARS-CoV-2/COVID-19. There are currently two formats that are widely used: non-magnetic beads or magnetic beads. Data are lacking regarding the comparability of results obtained using these two types of beads, and for assays run on different instruments. Whilst non-magnetic beads can only be run on flow-based instruments (such as the Luminex® 100/200™ or Bio-Plex® 200), magnetic beads can be run on both these and the newer MAGPIX® instruments. In this study we utilized a panel of purified recombinant Plasmodium vivax proteins and samples from malaria-endemic areas to measure P. vivax-specific IgG responses using different combinations of beads and instruments. We directly compared: i) non-magnetic versus magnetic beads run on a Bio-Plex® 200, ii) magnetic beads run on the Bio-Plex® 200 versus MAGPIX® and iii) non-magnetic beads run on a Bio-Plex® 200 versus magnetic beads run on the MAGPIX®. We also performed an external comparison of our optimized assay. We observed that IgG antibody responses, measured against our panel of P. vivax proteins, were moderately-strongly correlated in all three of our comparisons (pearson r>0.5 for 18/19 proteins), however higher amounts of protein were required for coupling to magnetic beads. Our external comparison indicated that results generated in different laboratories using the same coupled beads are also highly comparable (pearson r>0.7), particularly if a reference standard curve is used.


Asunto(s)
Separación Celular/métodos , Inmunoglobulina G/inmunología , Separación Inmunomagnética/métodos , Antígenos de Protozoos/inmunología , Niño , Preescolar , Femenino , Humanos , Fenómenos Magnéticos , Malaria/inmunología , Malaria Vivax/inmunología , Masculino , Microesferas , Papúa Nueva Guinea/epidemiología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Tecnología
7.
Nat Med ; 26(5): 741-749, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405064

RESUMEN

A major gap in the Plasmodium vivax elimination toolkit is the identification of individuals carrying clinically silent and undetectable liver-stage parasites, called hypnozoites. This study developed a panel of serological exposure markers capable of classifying individuals with recent P. vivax infections who have a high likelihood of harboring hypnozoites. We measured IgG antibody responses to 342 P. vivax proteins in longitudinal clinical cohorts conducted in Thailand and Brazil and identified candidate serological markers of exposure. Candidate markers were validated using samples from year-long observational cohorts conducted in Thailand, Brazil and the Solomon Islands and antibody responses to eight P. vivax proteins classified P. vivax infections in the previous 9 months with 80% sensitivity and specificity. Mathematical models demonstrate that a serological testing and treatment strategy could reduce P. vivax prevalence by 59-69%. These eight antibody responses can serve as a biomarker, identifying individuals who should be targeted with anti-hypnozoite therapy.


Asunto(s)
Biomarcadores/sangre , Malaria Vivax/diagnóstico , Pruebas Serológicas/métodos , Adulto , Brasil/epidemiología , Niño , Estudios de Cohortes , Diagnóstico Precoz , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/sangre , Control de Infecciones/métodos , Estudios Longitudinales , Malaria Vivax/sangre , Malaria Vivax/epidemiología , Melanesia/epidemiología , Plasmodium vivax/fisiología , Prevalencia , Sensibilidad y Especificidad , Pruebas Serológicas/normas , Tailandia/epidemiología , Factores de Tiempo
8.
Elife ; 62017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28949293

RESUMEN

The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 P. vivax antigens, investigating their relationship with prospective risk of malaria in a cohort of 1-3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time. High antibody levels to multiple known and newly identified proteins were strongly associated with protection (IRR 0.44-0.74, p<0.001-0.041). Among five-antigen combinations with the strongest protective effect (>90%), EBP, DBPII, RBP1a, CyRPA, and PVX_081550 were most frequently identified; several of them requiring very low antibody levels to show a protective association. These data identify individual antigens that should be prioritized for further functional testing and establish a clear path to testing a multicomponent P. vivax vaccine.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Antígenos de Protozoos/genética , Preescolar , Humanos , Inmunoglobulina G/sangre , Lactante , Vacunas contra la Malaria/aislamiento & purificación , Papúa Nueva Guinea , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética
9.
PLoS Med ; 12(10): e1001891, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26505753

RESUMEN

BACKGROUND: The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children. METHODS AND FINDINGS: From 17 August 2009 to 20 May 2010, 524 children aged 5-10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes. CONCLUSIONS: These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission. TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/transmisión , Modelos Estadísticos , Plasmodium ovale/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Niño , Preescolar , Erradicación de la Enfermedad/tendencias , Método Doble Ciego , Femenino , Humanos , Masculino , Papúa Nueva Guinea/epidemiología , Placebos , Reacción en Cadena en Tiempo Real de la Polimerasa , Recurrencia , Resultado del Tratamiento
10.
Int J Genomics ; 2013: 586498, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23998118

RESUMEN

Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...