Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668513

RESUMEN

Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow-waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p < 0.05) with in vivo inflammatory potency (BALF cytokines, lung/heart mRNA, and plasma markers). Overall, DEPULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives.

2.
Analyst ; 147(16): 3692-3708, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35848500

RESUMEN

Silica nanoparticles (SiNPs) are used in consumer products, engineering and medical technologies. Attractive properties of SiNPs (e.g. size/surface-modification) enhance usage and thus the likelihood of environmental/human exposures. The assessment of health risks associated with exposures to SiNPs requires information on their relative potencies and toxicity mechanisms. In this work, phagocytic J774 cells were exposed to amorphous pristine (15, 30, 75 nm) and surface-modified (-NH2, -C3COOH, -C11COOH, -PEG) SiNP variants, and internalization was assessed by transmission electron microscopy (TEM), while cellular ATP was measured as a cytotoxicity endpoint. Furthermore, mitochondrial fractions from J774 cells were exposed to these SiNP variants (5, 15 µg mL-1), as well as two reference particles (SiNP 12 nm and TiO2), and proteomic changes were analyzed by mass spectrometry. Ingenuity Pathway Analysis was used to identify toxicity pathways. TEM analyses showed SiNP internalization and distribution along with some changes in mitochondrial structure. SiNP size- and surface-modification and chemical composition-related changes in mitochondrial proteins, including key proteins of the respiratory complex and oxidative stress, were evident based on high content mass spectrometry data. In addition, the dose-related decrease in cellular ATP levels in SiNP-exposed cells was consistent with related mitochondrial protein profiles. These findings suggest that physicochemical properties can be determinants of SiNP exposure-related mitochondrial effects, and mitochondrial exposures combined with proteomic analysis can be valuable as a new approach methodology in the toxicity screening of SiNPs for risk assessment, with added insight into related toxicity mechanisms.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Adenosina Trifosfato , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Tamaño de la Partícula , Proteómica , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad
3.
Inhal Toxicol ; 34(3-4): 80-89, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35212581

RESUMEN

OBJECTIVE: Growing interest in non-animal-based models has led to the development of devices to expose cells to airborne substances. Cells/tissues grown at the air-liquid interface (ALI) are more representative of lung cells/tissues in vivo compared to submerged cell cultures. Additionally, airborne exposures should allow for closer modeling of human lung toxicity. However, such exposures present technical challenges, including maintaining optimal cell health, and establishing consistent exposure monitoring and control. We aimed to establish a reliable system and procedures for cell exposures to gases at the ALI. METHODS: We tested and adapted a horizontal-flow ALI-exposure system to verify and optimize temperature, humidity/condensation, and control of atmosphere delivery. We measured temperature and relative humidity (RH) throughout the system, including at the outlet (surrogate measures) and at the well, and evaluated viability of lung epithelial A549 cells under control conditions. Exposure stability, dosimetry, and toxicity were tested using ozone. RESULTS: Temperatures measured directly above wells vs. outflow differed; using above-well temperature enabled determination of near-well RH. Under optimized conditions, the viability of A549 cells exposed to clean air (2 h) in the ALI system was unchanged from incubator-grown cells. In-well ozone levels, determined through reaction with potassium indigotrisulfonate, confirmed dosing. Cells exposed to 200 ppb ozone at the ALI presented reduced viability, while submerged cells did not. CONCLUSION: Our results emphasize the importance of monitoring near-well conditions rather than relying on surrogate measures. Rigorous assessment of ALI exposure conditions led to procedures for reproducible exposure of cells to gases.


Asunto(s)
Pulmón , Ozono , Células A549 , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Células Epiteliales , Humanos , Ozono/toxicidad
4.
Environ Toxicol Pharmacol ; 86: 103662, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33878450

RESUMEN

Although considerable inter-individual variability exists in health effects associated with air pollutant exposure, underlying reasons remain unclear. We examined whether innate differences in stress axis function modify lung glucocorticoid and macrophage responses to ozone (O3). Highly-stress responsive Fischer (F344) and less responsive Lewis (LEW) rats were exposed for 4 h by nose-only inhalation to air or O3 (0.8 ppm). Ozone increased corticosterone recovered by bronchoalveolar lavage in both strains (F344 > LEW). Higher corticosterone in F344 was associated with a blunted response to O3 of macrophage pro-inflammatory genes compared to LEW. Pharmacological inhibition of O3-dependent corticosterone production in F344 enhanced the inflammatory gene response to O3, mimicking the LEW phenotype. Examination of potential impacts of glucocorticoids on macrophage function using a human monocyte-derived macrophage cell line (THP-1) showed that cortisol modified phagocytosis in a macrophage phenotype-dependent manner. Overall, our data implicate endogenous glucocorticoids in the regulation of pulmonary macrophage responses to O3.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ozono/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Humanos , Pulmón/metabolismo , Macrófagos/metabolismo , Masculino , Fagocitosis/efectos de los fármacos , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Estrés Fisiológico , Células THP-1
5.
Analyst ; 145(14): 4867-4879, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32467957

RESUMEN

Silica nanoparticles (SiNPs) are used in a wide range of consumer products, engineering and medical applications, with likelihood of human exposure and potential health concerns. It is essential to generate toxicity information on SiNP forms and associated physicochemical determinants to conduct risk assessment on these new materials. To address this knowledge gap, we screened a panel of custom synthesized, well-characterized amorphous SiNPs pristine and surface-modified (-C3-COOH, -C11-COOH, -NH2, -PEG) of 5 different sizes: (15, 30, 50, 75, 100 nm) for their oxidative potential using an acellular assay. The assay is based on oxidation of dithiothreitol (DTT) by reactive oxygen species and can serve as a surrogate test for oxidative stress. These materials were characterized for size distribution, aggregation, crystallinity, surface area, surface modification, surface charge and metal content. Tests for association between oxidative potential of SiNPs and their physicochemical properties were carried out using analysis of variance and correlation analyses. These test results suggest that the size of amorphous SiNPs influenced their oxidative potential irrespective of the surface modification, with 15 nm exhibiting relatively higher oxidative potential compared to the other sizes. Furthermore, SiNP surface area, surface modification and agglomeration in solution also appeared to affect oxidative potential of these SiNPs. These findings indicate that physicochemical properties are critical in influencing the oxidative behaviour of amorphous SiNPs, with potential to trigger cellular oxidative stress and thus toxicity, when exposed. This information advances our understanding of potential toxicities of these amorphous SiNPs and supports risk assessment efforts and the design of safer forms of silica nanomaterials.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Humanos , Nanopartículas/toxicidad , Estrés Oxidativo , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Dióxido de Silicio/toxicidad
6.
Environ Sci Technol ; 53(6): 3058-3066, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30794751

RESUMEN

The health impacts associated with engineered nanoparticles (ENPs) released into the atmosphere have not been adequately assessed. Such impacts could potentially arise from the toxicity associated with condensable atmospheric secondary organic material (SOM), or changes in the SOM composition induced by ENPs. Here, these possibilities are evaluated by investigating the oxidative and toxicological evolution of TiO2 and SiO2 nanoparticles which have been coated with SOM from the O3 or OH initiated oxidation of α-pinene. It was found that pristine SiO2 particles were significantly more cytotoxic compared to pristine TiO2 particles. TiO2 in the dark or under UV irradiation catalytically reacted with the SOM, increasing its O/C by up to 55% over photochemically inert SiO2 while having negligible effects on the overall cytotoxicity. Conversely, the cytotoxicity associated with SiO2 coated with SOM was markedly suppressed (by a factor of 9, at the highest exposure dose) with both increased SOM coating thickness and increased photochemical aging. These suppressing effects (organic coating and photo-oxidation of organics) were attributed to a physical hindrance of SiO2-cell interactions by the SOM and enhanced SOM viscosity and hydrophilicity with continued photo-oxidation, respectively. These findings highlight the importance of atmospheric processes in altering the cytotoxicity of ENPs.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Atmósfera , Oxidación-Reducción , Estrés Oxidativo
7.
ACS Nano ; 12(12): 12062-12079, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475590

RESUMEN

Nanoforms of mesoporous silica (mSiNPs) are increasingly applied in medicine, imaging, energy storage, catalysis, biosensors, and bioremediation. The impact of their physicochemical properties on health and the environment remain to be elucidated. In this work, newly synthesized mesoporous silica (sizes: 25, 70, 100, 170, and 600 nm; surface functionalization: pristine, C3-, and C11-COOH moieties) were assessed for cytotoxicity and induction of inflammatory responses in vitro (A549, THP-1, J774A.1 cells). All toxicity end points were integrated to obtain simple descriptors of biological potencies of these mSiNPs. The findings indicate that mSiNPs are less bioactive than the nonporous reference SiNP used in this study. The C3-COOH-modified mSiNPs were generally less cytotoxic than their pristine and C11-modified counterparts in the nanorange (≤100 nm). Carboxyl-modified mSiNPs affected inflammatory marker release across all sizes with cell-type specificity, suggesting a potential for immunomodulatory effects. Surface area, size, extent of agglomeration, ζ-potential, and surface modification appeared to be important determinants of cytotoxicity of mSiNPs based on association tests. Pathway analysis identified particle and cell-type-specific alteration of cellular pathways and functions by mSiNPs. The integration of exposure-related biological responses of multiple cell lines to mSiNPs allowed for a comprehensive evaluation of the impact of physicochemical factors on their toxicity characteristics. The integrated multilevel toxicity assessment approach can be valuable as a hazard screening tool for safety evaluations of emerging nanomaterials for regulatory purpose.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Células A549 , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Química Física , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química , Dióxido de Silicio/farmacología , Propiedades de Superficie , Células THP-1
8.
J Appl Toxicol ; 38(10): 1302-1315, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845627

RESUMEN

Knowledge of biological reactivity and underlying toxicity mechanisms of airborne particulate matter (PM) is central to the characterization of the risk associated with these pollutants. An integrated screening platform consisting of protein profiling of cellular responses and cytotoxic analysis was developed in this study for the estimation of PM potencies. Mouse macrophage (J774A.1) and human lung epithelial cells (A549) were exposed in vitro to Ottawa urban particles (EHC6802) and two reference mineral particles (TiO2 and SiO2 ). Samples from the in vitro exposure experiment were tested following an integrated classical cytotoxicity/toxicoproteomic assessment approach for cellular viability (CellTiter Blue®, lactate dehydrogenase) and proteomic analyses. Cellular proteins were pre-fractionated by molecular weight cut-off filtration, digested enzymatically and were analyzed by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight-mass spectrometry for protein profiling and identification. Optimization of detergent removal, pre-fractionation strategies and enzymatic digestion procedures led to increased tryptic peptide (m/z) signals with reduced sample processing times, for small total protein contents. Proteomic analyses using this optimized procedure identified statistically significant (P < 0.05) PM dose-dependent changes at the molecular level. Ranking of PM potencies based on toxicoproteomic analysis were in line with classical cytotoxicity potency-based ranking. The high content toxicoproteomic approach exhibited the potential to add value to risk characterization of environmental PM exposures by complementing and validating existing cytotoxicity testing strategies.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Células Epiteliales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Material Particulado/toxicidad , Proteoma/metabolismo , Células A549 , Animales , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Tamaño de la Partícula , Proteómica/métodos , Dióxido de Silicio/toxicidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Titanio/toxicidad
9.
Part Fibre Toxicol ; 14(1): 39, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28969663

RESUMEN

BACKGROUND: Toxicity of airborne particulate matter (PM) is difficult to assess because PM composition is complex and variable due to source contribution and atmospheric transformation. In this study, we used an in vitro toxicoproteomic approach to identify the toxicity mechanisms associated with different subfractions of Ottawa urban dust (EHC-93). METHODS: A549 human lung epithelial cells were exposed to 0, 60, 140 and 200 µg/cm2 doses of EHC-93 (total), its insoluble and soluble fractions for 24 h. Multiple cytotoxicity assays and proteomic analyses were used to assess particle toxicity in the exposed cells. RESULTS: The cytotoxicity data based on cellular ATP, BrdU incorporation and LDH leakage indicated that the insoluble, but not the soluble, fraction is responsible for the toxicity of EHC-93 in A549 cells. Two-dimensional gel electrophoresis results revealed that the expressions of 206 protein spots were significantly altered after particle exposures, where 154 were identified by MALDI-TOF-TOF-MS/MS. The results from cytotoxicity assays and proteomic analyses converged to a similar finding that the effects of the total and insoluble fraction may be alike, but their effects were distinguishable, and their effects were significantly different from the soluble fraction. Furthermore, the toxic potency of EHC-93 total is not equal to the sum of its insoluble and soluble fractions, implying inter-component interactions between insoluble and soluble materials resulting in synergistic or antagonistic cytotoxic effects. Pathway analysis based on the low toxicity dose (60 µg/cm2) indicated that the two subfractions can alter the expression of those proteins involved in pathways including cell death, cell proliferation and inflammatory response in a distinguishable manner. For example, the insoluble and soluble fractions differentially affected the secretion of pro-inflammatory cytokines such as MCP-1 and IL-8 and distinctly altered the expression of those proteins (e.g., TREM1, PDIA3 and ENO1) involved in an inflammatory response pathway in A549 cells. CONCLUSIONS: This study demonstrated the impact of different fractions of urban air particles constituted of various chemical species on different mechanistic pathways and thus on cytotoxicity effects. In vitro toxicoproteomics can be a valuable tool in mapping these differences in air pollutant exposure-related toxicity mechanisms.


Asunto(s)
Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Proteómica/métodos , Solventes/química , Toxicología/métodos , Agua/química , Células A549 , Supervivencia Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-8/metabolismo , Pulmón/metabolismo , Pulmón/patología , Material Particulado/química , Medición de Riesgo , Transducción de Señal/efectos de los fármacos , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Nanotoxicology ; 11(2): 223-235, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28142331

RESUMEN

The likelihood of environmental and health impacts of silicon dioxide nanoparticles (SiNPs) has risen, due to their increased use in products and applications. The biological potency of a set of similarly-sized amorphous SiNPs was investigated in a variety of cells to examine the influence of physico-chemical and biological factors on their toxicity. Cellular LDH and ATP, BrdU incorporation, resazurin reduction and cytokine release were measured in human epithelial A549, human THP-1 and mouse J774A.1 macrophage cells exposed for 24 h to suspensions of 5-15, 10-20 and 12 nm SiNPs and reference particles. The SiNPs were characterized in dry state and in suspension to determine their physico-chemical properties. The dose-response data were simplified into particle potency estimates to facilitate the comparison of multiple endpoints of biological effects in cells. Mouse macrophages were the most sensitive to SiNP exposures. Cytotoxicity of the individual cell lines was correlated while the cytokine responses differed, supported by cell type-specific differences in inflammation-associated pathways. SiNP (12 nm), the most cytotoxic and inflammogenic nanoparticle had the highest surface acidity, dry-state agglomerate size, the lowest trace metal and organics content, the smallest surface area and agglomerate size in suspension. Particle surface acidity appeared to be the most significant determinant of the overall biological activity of this set of nanoparticles. Combined with the nanoparticle characterization, integration of the biological potency estimates enabled a comprehensive determination of the cellular reactivity of the SiNPs. The approach shows promise as a useful tool for first-tier screening of SiNP toxicity.


Asunto(s)
Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/patología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie
11.
Nanobiomedicine (Rij) ; 4: 1849543517746259, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29942393

RESUMEN

Current antiretroviral drugs used to prevent or treat human immunodeficiency virus type 1 (HIV-1) infection are not able to eliminate the virus within tissues or cells where HIV establishes reservoirs. Hence, there is an urgent need to develop targeted delivery systems to enhance drug concentrations in these viral sanctuary sites. Macrophages are key players in HIV infection and contribute significantly to the cellular reservoirs of HIV because the virus can survive for prolonged periods in these cells. In the present work, we investigated the potential of the lipid-based Neutraplex nanosystem to deliver anti-HIV therapeutics in human macrophages using the human monocyte/macrophage cell line THP-1. Neutraplex nanoparticles as well as cationic and anionic Neutraplex nanolipoplexes (Neutraplex/small interfering RNA) were prepared and characterized by dynamic light scattering. Neutraplex nanoparticles showed low cytotoxicity in CellTiter-Blue reduction and lactate dehydrogenase release assays and were not found to have pro-inflammatory effects. In addition, confocal studies showed that the Neutraplex nanoparticles and nanolipoplexes are rapidly internalized into THP-1 macrophages and that they can escape the late endosome/lysosome compartment allowing the delivery of small interfering RNAs in the cytoplasm. Furthermore, HIV replication was inhibited in the in vitro TZM-bl infectivity assay when small interfering RNAs targeting CXCR4 co-receptor was delivered by Neutraplex nanoparticles compared to a random small interfering RNA sequence. This study demonstrates that the Neutraplex nanosystem has potential for further development as a delivery strategy to efficiently and safely enhance the transport of therapeutic molecules into human monocyte-derived macrophages in the aim of targeting HIV-1 in this cellular reservoir.

12.
J Appl Toxicol ; 37(6): 721-731, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27917503

RESUMEN

In this study, we used cytotoxicity assays, proteomic and gene expression analyses to examine the difference in response of A549 cells to two silica particles that differ in physical properties, namely cristobalite (CR) and α-quartz (Min-U-Sil 5, MI). Cytotoxicity assays such as lactate dehydrogenase release, 5-bromo-2'-deoxyuridine incorporation and cellular ATP showed that both silica particles could cause cell death, decreased cell proliferation and metabolism in the A549 human lung epithelial cells. While cytotoxicity assays revealed little difference between CR and MI exposures, proteomic and gene expression analyses unveiled both similar and unique molecular changes in A549 cells. For instance, two-dimensional gel electrophoresis data indicated that the expression of proteins in the cell death (e.g., ALDH1A1, HTRA2 and PRDX6) and cell proliferation (e.g., FSCN1, HNRNPAB and PGK1) pathways were significantly different between the two silica particles. Reverse transcription-polymerase chain reaction data provided additional evidence supporting the proteomic findings. Preliminary assessment of the physical differences between CR and MI suggested that the extent of surface interaction between particles and cells could explain some of the observed biological effects. However, the differential dose-response curves for some other genes and proteins suggest that other physical attributes of particulate matter can also contribute to particulate matter-related cellular toxicity. Our results demonstrated that toxicoproteomic and gene expression analyses are sensitive in distinguishing subtle toxicity differences associated with silica particles of varying physical properties compared to traditional cytotoxicity endpoints. Copyright © 2016 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Material Particulado/toxicidad , Proteoma/efectos de los fármacos , Dióxido de Silicio/toxicidad , Transcriptoma/efectos de los fármacos , Células A549 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel Bidimensional , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Material Particulado/química , Proteómica/métodos , Cuarzo/química , Cuarzo/toxicidad , Sensibilidad y Especificidad , Dióxido de Silicio/química , Propiedades de Superficie
13.
Part Fibre Toxicol ; 13(1): 65, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906031

RESUMEN

BACKGROUND: Industrial sources contribute a significant proportion of anthropogenic particulate matter (PM) emissions, producing particles of varying composition that may differentially impact health. This study investigated the in vitro toxicity of ambient PM collected near industrial sites in relation to particle size and composition. METHODS: Size-fractionated particles (ultrafine, PM0.1-2.5, PM2.5-10, PM>10) were collected in the vicinity of steel, copper, aluminium, and petrochemical industrial sites. Human lung epithelial-like A549 and murine macrophage-like J774A.1 cells were exposed for 24 h to particle suspensions (0, 30, 100, 300 µg/cm2). Particle potency was assessed using cytotoxic (resazurin reduction, lactate dehydrogenase (LDH) release) and inflammatory (cytokine release) assays, and regressed against composition (metals, polycyclic aromatic hydrocarbons (PAHs), endotoxin). RESULTS: Coarse (PM2.5-10, PM>10) particle fractions were composed primarily of iron and aluminium; in contrast, ultrafine and fine (PM0.1-2.5) fractions displayed considerable variability in metal composition (especially water-soluble metals) across collection sites consistent with source contributions. Semi-volatile and PM-associated PAHs were enriched in the fine and coarse fractions collected near metal industry. Cell responses to exposure at equivalent mass concentrations displayed striking differences among sites (SITE x SIZE and SITE x DOSE interactions, p < 0.05), suggesting that particle composition, in addition to size, impacted particle toxicity. While both J774A.1 and A549 cells exhibited clear particle size-dependent effects, site-dependent differences were more pronounced in J774A.1 cells, suggesting greater sensitivity to particle composition. Plotting particle potency according to cytotoxic and inflammatory response grouped particles by size and site, and showed that particles of similar composition tended to cluster together. Cytotoxic effects in J774A.1 cells correlated with metal and PAH content, while inflammatory responses were associated primarily with endotoxin content in coarse particles. CONCLUSIONS: Industrial sources produce particulate emissions with varying chemical composition that differ in their in vitro potency in relation to particle size and the levels of specific constituents.


Asunto(s)
Industrias , Material Particulado/toxicidad , Animales , Línea Celular , Citocinas/metabolismo , Humanos , Ratones
14.
Data Brief ; 8: 687-91, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27508218

RESUMEN

Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

15.
Part Fibre Toxicol ; 13(1): 41, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27520027

RESUMEN

BACKGROUND: Association of particulate matter with adverse health effects has been established in epidemiological studies and animal experiments. Epidemiological studies are difficult to undertake while animal studies are impractical for high-throughput toxicity testing. The ease and rapidity of in vitro tests emphasizes their potential for use in risk assessment of chemicals and particles. We examined the association between in vitro and in vivo responses to ambient particles, to determine the potential of cell-based assays as standalone toxicity screening tools. METHODS: Assays of cytotoxicity and key inflammatory mediators were applied to determine the in vitro biological potency of a panel of urban and mineral particles in J774A.1 macrophages and A549 lung epithelial cells. The particles were also screened for the presence of AhR agonists using the Ah receptor-dependent gene induction assay and for endotoxin using the Limulus amebocyte lysate assay. A subset of the particles with a contrasting in vitro toxicity profile was delivered intratracheally in BALB/c mice to assess their in vivo biological potency. Results from various bioassays were combined within the in vitro and in vivo models. The combined potency measures were examined for associations. RESULTS: Overall, J774A.1 cells were more sensitive to particle effects than A549 cells. Whereas the combined cytotoxicity estimates were highly correlated between the two cell lines, the combined in vitro inflammatory potency estimates were not, emphasizing functional differences of the two cell types. Secretion of inflammatory markers by J774A.1 cells was correlated with AhR ligand binding profile and endotoxin levels of particles. Particle instillation led to an acute toxicity response in BALB/c mice, with neutrophilia and release of inflammatory mediators. While the combined toxicity estimates were not correlated between in vitro and in vivo models, the combined inflammatory and integrated potency estimates (toxicity and inflammation) approached the threshold for significance (p = 0.052) in a correlation within in vitro and in vivo models, with a ranking of fine particle (DWR1), minerals (TiO2, CRI) and coarse particles (SRM-, EHC-type) from low to high potency. CONCLUSION: Integration of in vitro endpoints shows promise in determining adverse outcomes of particle exposures in vivo. The devised data reduction and computational approach will prove useful in the development of models for assessment of hazard potential of particles; however, distinct models may be needed for particles of different type, such as urban particles vs. mineral particles, nanomaterials.


Asunto(s)
Material Particulado/toxicidad , Animales , Línea Celular , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C
16.
J Proteomics ; 149: 53-63, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27084686

RESUMEN

This study combined cytotoxicity assays with proteomic analysis to characterize the unique biological responses of the A549 human lung epithelial cell line to two physicochemically distinct respirable particles titanium dioxide (TiO2) and carbon black (CB). Cellular LDH, ATP, BrdU incorporation and resazurin reduction indicated that CB was more potent than TiO2. Proteomic analysis was done using 2D-GE and MALDI-TOF-TOF-MS. Proteomic changes reflected common and particle-specific responses. Particle-specific proteomic responses were associated with cell death (necrosis and apoptosis), viability and proliferation pathways. Our results suggested that these pathways were consistent with the cytotoxicity data. For instance, increased expressions of anti-proliferative proteins LMNA and PA2G4 were in agreement with the decreased BrdU incorporation in A549 cells after exposure to CB. Similarly, increased expression of HSPA5 that is associated with ATPase activity was consistent with decreased cellular ATP levels in these cells. These findings reveal that proteomic changes can explain the cellular cytotoxicity characteristics of the particles. In essence, our results demonstrate that the in vitro toxicoproteomic approach is a promising tool to gain insight into molecular mechanisms underlying particle exposure-specific cytotoxicity. BIOLOGICAL SIGNIFICANCE: In this study we have shown that toxicoproteomics is a sensitive and informative method to resolve the toxicity characteristics of particles with different physicochemical properties. This approach can be useful in the investigation of molecular mechanisms underpinning cellular cytotoxic responses elicited by particle exposures. Thus, the toxicoproteomic approach can be valuable in assessing the risk associated with particle exposures in vitro.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Proteínas/análisis , Proteómica/métodos , Hollín/toxicidad , Protectores Solares/toxicidad , Titanio/toxicidad , Células A549 , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales Alveolares/metabolismo , Análisis de Varianza , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel Bidimensional , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/metabolismo , Humanos , Lamina Tipo A/análisis , Lamina Tipo A/metabolismo , Tamaño de la Partícula , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pruebas de Toxicidad
17.
Part Fibre Toxicol ; 12: 24, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26178321

RESUMEN

BACKGROUND: Exposure to coarse, fine, and ultrafine particles is associated with adverse population health impacts. We investigated whether size-fractionated particles collected repeatedly in the vicinity of industrial (steel mills and associated coking operations, wastewater treatment), high traffic, and residential areas display systematic differences in biological potency. METHODS: Particulate matter (PM<0.1, PM0.1-0.5, PM0.5-2.5, PM2.5-10, PM>10) samples collected at sites within Windsor, Ontario, were screened for biological potency in human A549 lung epithelial and murine J774A.1 macrophage-like cells using cytotoxicity bioassays (cellular ATP, resazurin reduction, lactate dehydrogenase (LDH) release), cytokine production, and transcript profiles. Potency was determined from the slope of each dose-effect relationship. RESULTS: Cytotoxic potency varied across size fractions and within a fraction across sites and sampling periods, suggesting that particle composition, in addition to size and mass, affected particle toxicity. While ATP and LDH profiles showed some similarity, resazurin reduction (a measure of metabolic activity) exhibited a unique pattern of response, indicating that the cytotoxicity assays were sensitive to distinct particle characteristics. Chemical speciation varied in relation to prevailing winds, consistent with enrichment of source emissions (e.g. higher metal and polycyclic aromatic hydrocarbon content downwind of the industrial site). Notwithstanding this variability, site-dependent differences in particle toxicity were evident, including greater potency of coarse fractions at the industrial site and of ultrafine particles at the traffic site (Site × Size interactions, p < 0.05). Regression of potency against particle constituents revealed correlations between resazurin reduction, induction of metal-responsive genes, and metal content, which were particularly strong for the coarse fraction, and between cytokine release and endotoxin, suggesting that these factors were important drivers of biological effects that explain, at least in part, the contrasting potencies of particles compared on an equivalent mass basis. CONCLUSIONS: The data show that 1) particle potency and composition can exhibit significant temporal variation in relation to source contributions; 2) sources may differentially impact the potency of specific size fractions; and 3) particle constituents, notably metals and endotoxin, may elicit distinct biological responses. Together, the data are consistent with the notion that sources and composition, in addition to size and mass concentration, are relevant to particle toxicity.


Asunto(s)
Monitoreo del Ambiente/métodos , Residuos Industriales/efectos adversos , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Neumonía/inducido químicamente , Salud Urbana , Emisiones de Vehículos/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Exposición por Inhalación , L-Lactato Deshidrogenasa/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ontario , Oxidación-Reducción , Tamaño de la Partícula , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Medición de Riesgo , Viento
18.
Environ Sci Technol ; 49(5): 2806-14, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25607982

RESUMEN

The toxicity of carbon nanotubes (CNTs) has received significant attention due to their usage in a wide range of commercial applications. While numerous studies exist on their impacts in water and soil ecosystems, there is a lack of information on the exposure to CNTs from the atmosphere. The transformation of CNTs in the atmosphere, resulting in their functionalization, may significantly alter their toxicity. In the current study, the chemical modification of single wall carbon nanotubes (SWCNTs) via ozone and OH radical oxidation is investigated through studies that simulate a range of expected tropospheric particulate matter (PM) lifetimes, in order to link their chemical evolution to toxicological changes. The results indicate that the oxidation favors carboxylic acid functionalization, but significantly less than other studies performed under nonatmospheric conditions. Despite evidence of functionalization, neither O3 nor OH radical oxidation resulted in a change in redox activity (potentially giving rise to oxidative stress) or in cytotoxic end points. Conversely, both the redox activity and cytotoxicity of SWCNTs significantly decreased when exposed to ambient urban air, likely due to the adsorption of organic carbon vapors. These results suggest that the effect of gas-particle partitioning of organics in the atmosphere on the toxicity of SWCNTs should be investigated further.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Material Particulado/química , Material Particulado/toxicidad , Línea Celular Tumoral , Senescencia Celular , Humanos , Oxidación-Reducción
19.
Toxicol In Vitro ; 29(1): 142-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25283091

RESUMEN

In vitro cytotoxicity assays are essential tools in the screening of engineered nanomaterials (NM) for cellular toxicity. The resazurin live cell assay is widely used because it is non-destructive and is well suited for high-throughput platforms. However, NMs, in particular carbon nanotubes (CNT) can interfere in assays through quenching of transmitted light or fluorescence. We show that using the resazurin assay with time-point reading of clarified supernatants resolves this problem. Human lung epithelial (A549) and murine macrophage (J774A.1) cell lines were exposed to NMs in 96-well plates in 200 µL of media/well. After 24 h incubation, 100 µL of supernatant was removed, replaced with resazurin reagent in culture media and aliquots at 10 min and 120 min were transferred to black-wall 96-well plates. The plates were quick-spun to sediment the residual CNTs and fluorescence was top-read (λEx=540 nm, λEm=600 nm). The procedure was validated for CNTs as well as silica nanoparticles (SiNP). There was no indication of reduction of resazurin by the CNTs. Stability of resorufin, the fluorescent product of the resazurin reduction was then assessed. We found that polar CNTs could decrease the fluorescence signal for resorufin, possibly through oxidation to resazurin or hyper-reduction to hydroxyresorufin. This effect can be easily quantified for elimination of the bias. We recommend that careful consideration must be given to fluorimetric/colorimetric in vitro toxicological assessments of optically/chemically active NMs in order to relieve any potential artifacts due to the NMs themselves.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Nanopartículas/toxicidad , Nanotubos de Carbono/efectos adversos , Oxazinas , Pruebas de Toxicidad/métodos , Xantenos , Línea Celular , Fluorescencia , Humanos
20.
Nanotoxicology ; 9(2): 148-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24713075

RESUMEN

While production of engineered carbon nanotubes (CNTs) has escalated in recent years, knowledge of risk associated with exposure to these materials remains unclear. We report on the cytotoxicity of four CNT variants in human lung epithelial cells (A549) and murine macrophages (J774). Morphology, metal content, aggregation/agglomeration state, pore volume, surface area and modifications were determined for the pristine and oxidized single-walled (SW) and multi-walled (MW) CNTs. Cytotoxicity was evaluated by cellular ATP content, BrdU incorporation, lactate dehydrogenase (LDH) release, and CellTiter-Blue (CTB) reduction assays. All CNTs were more cytotoxic than respirable TiO2 and SiO2 reference particles. Oxidation of CNTs removed most metallic impurities but introduced surface polar functionalities. Although slopes of fold changes for cytotoxicity endpoints were steeper with J774 compared to A549 cells, CNT cytotoxicity ranking in both cell types was assay-dependent. Based on CTB reduction and BrdU incorporation, the cytotoxicity of the polar oxidized CNTs was higher compared to the pristine CNTs. In contrast, pristine CNTs were more cytotoxic than oxidized CNTs when assessed for cellular ATP and LDH. Correlation analyses between CNTs' physico-chemical properties and average relative potency revealed the impact of metal content and surface area on the potency values estimated using ATP and LDH assays, while surface polarity affected the potency values estimated from CTB and BrdU assays. We show that in order to reliably estimate the risk posed by these materials, in vitro toxicity assessment of CNTs should be conducted with well characterized materials, in multiple cellular models using several cytotoxicity assays that report on distinct cellular processes.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/efectos adversos , Células Epiteliales/citología , Humanos , Macrófagos/citología , Ratones , Oxidación-Reducción , Propiedades de Superficie , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...