Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 14: 935973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966785

RESUMEN

Introduction: The typical symptoms of Alzheimer's disease (AD) are cognitive impairment, disrupted spatial orientation, behavioral and psychiatric abnormalities, and later motor deficits. Neuropathologically, AD is characterized by deposits of pathological forms of endogenous proteins - amyloid-ß, and neurofibrillary tau protein pathology. The latter closely correlates with brain atrophy and clinical impairment. Pharmacological therapies for these pathologies are largely absent, raising the question whether non-pharmacological interventions could be efficacious. Environmental factors can play a role in the manifestation of AD. It is unknown whether enriched environment (EE) can ameliorate the propagation of protein aggregates or their toxic components. Methods: We injected insoluble tau extracts from human brains with AD (600 or 900 ng per animal) into hippocampi of SHR72 transgenic rats that express non-mutated truncated human tau 151-391/4R, but usually do not develop hippocampal tangles. The rats had either standard housing, or could access an EE 5×/week for 3 months. Behavioral analysis included the Morris Water Maze (MWM). Histological analysis was used to assess the propagation of tau pathology. Results: Animals exposed to EE performed better in the MWM (spatial acquisition duration and total distance, probe test); unexposed animals improved over the course of acquisition trials, but their mean performance remained below that of the EE group. Enriched environment abrogated tau propagation and hippocampal tangle formation in the 600 ng group; in the 900 ng group, tangle formation was ∼10-fold of the 600 ng group, and unaffected by EE. Conclusion: Even a small difference in the amount of injected human AD tau can cause a pronounced difference in the number of resulting tangles. EE leads to a noticeably better spatial navigation performance of tau-injected animals. Furthermore, EE seems to be able to slow down tau pathology progression, indicating the possible utility of similar interventions in early stages of AD where tangle loads are still low.

2.
Cells ; 11(9)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563735

RESUMEN

Astrocytes regulate important functions in the brain, and their dysregulation has been linked to the etiology of neurodegenerative diseases, such as Alzheimer's disease (AD). The role of astroglia in human AD remains enigmatic, owing to the limitations of animal models, which, while recreating some pathological aspects of the disease, do not fully mirror its course. In addition, the recognition of major structural and functional differences between human and mouse astrocytes has also prompted research into human glial cells. In the current study, astrocytes were generated using human iPSCs from patients with sporadic Alzheimer's disease (sAD), familial Alzheimer's disease (fAD) and non-demented controls (NDC). All clones gained astrocyte-specific morphological and proteomic characteristics upon in vitro differentiation, without considerable inter-clonal variances. In comparison to NDC, AD astrocytes displayed aberrant calcium dynamics in response to glutamate. When exposed to monomeric and aggregated tau, AD astrocytes demonstrated hypertrophy and elevated GFAP expression, differential expression of select signaling and receptor proteins, and the enhanced production of metalloproteinases (MMPs). Moreover, astrocytic secretomes were able to degrade tau in both monomeric and pathologically aggregated forms, which was mediated by MMP-2 and -9. The capacity to neutralize tau varied considerably between clones, with fAD astrocytes having the lowest degradability relative to sAD and healthy astrocytes. Importantly, when compared to aggregated tau alone, astrocytic secretome pretreatment of tau differentially reduced its detrimental effects on neurons. Our results show crucial differences in sporadic and familial AD astrocytes and suggests that these cells may play distinctive roles in the pathogenesis of early and late onset Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Señalización del Calcio , Proteómica , Proteínas tau/metabolismo
3.
Gen Physiol Biophys ; 40(6): 541-549, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34897025

RESUMEN

Spreading of tau pathology to anatomical distinct regions in Alzheimer's disease (AD) is associated with progression of the disease. Studies in recent decade have strived to understand the processes involved in this characteristic spread. We recently showed that AD-derived insoluble tau seeds are able to initiate neurofibrillary pathology in transgenic rodent model of tauopathy. In the present study, we pursued to identify the molecular changes that govern the induction and propagation of tau pathology on the transcriptomic level. We first show that microglia in vicinity to AD-Tau-induced pathology has phagocytic morphology when compared to PBS-injected group. On transcriptomic level, we observed deregulation of 15 genes 3-month post AD-Tau seeds inoculation. Integrated bioinformatic analysis identified 31 significantly enriched pathways. Amongst these, the inflammatory signalling pathway mediated by cytokine and chemokine networks, along with, toll-like receptor and JAK-STAT signalling were the most dominant. Furthermore, the enriched signalling also involved the regulation of autophagy, mitophagy and endoplasmic reticulum stress pathways. To our best of knowledge, the study is the first to investigate the transcriptomic profile of AD-Tau seed-induced pathology in hippocampus of transgenic model of tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Hipocampo/metabolismo , Humanos , Tauopatías/genética , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
4.
J Alzheimers Dis ; 77(2): 551-568, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32675411

RESUMEN

BACKGROUND: Neuronal accumulation of hyperphosphorylated and truncated tau aggregates is one of the major defining factors and key drivers of neurodegeneration in Alzheimer's disease and other tauopathies. OBJECTIVE: We developed an AAV-induced model of tauopathy mediated by human truncated tau protein without familial frontotemporal dementia-related mutations to study tau propagation and the functional consequences of tau pathology. METHODS: We performed targeted transductions of the hippocampus or entorhinal cortex in adult mice followed by histological analysis to study the progression of hippocampal tau pathology and tau spreading. We performed behavioral analysis of mice with AAV-induced hippocampal tau pathology. RESULTS: AAV-induced hippocampal tau pathology was characterized by tau hyperphosphorylation (AT8 positivity), sarkosyl insolubility, and the presence of neurofibrillary tangles. AAV-induced tau pathology was associated with microgliosis and hypertrophic astrocytes in the absence of cognitive deficits. Additionally, the co-expression of mCherry fluorescent protein and human truncated tau enabled us to detect both local spreading of human tau and spreading from the entorhinal cortex to the synaptically connected dentate gyrus. CONCLUSION: Targeted delivery of AAV with truncated tau protein into subcortical and cortical structures of mammalian brains represents an efficient approach for creating temporally and spatially well-defined tau pathology suitable for in vivo studies of tau propagation and neuronal circuit deficits in Alzheimer's disease.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Mutación , Neuronas/virología , Tauopatías/virología , Proteínas tau/administración & dosificación , Adenoviridae/genética , Animales , Femenino , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
6.
J Comp Neurol ; 528(12): 2021-2032, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32003471

RESUMEN

Meningeal immunity along with its associated lymphatic vasculatures is widely discussed recently. Lymphatic vessels in meninges drain interstitial fluid into the deep-cervical lymph nodes. The vessels are composed of cells that express the cardinal marker for lymphatic endothelium-the lymphatic vessel hyaluronan receptor-1 (Lyve-1). However, studies also show the presence of nonendothelial Lyve-1 expressing cells in certain tissues. Therefore, we were curious if nonendothelial Lyve-1+ cells are also present in dura mater of meninges. We show that Lyve-1+ endothelial cells are distributed adjacent to the blood vessels in the brain dura mater of rats. We did not observe any lymphatic vessels in spinal dura mater. Interestingly, we also observed isolated population of nonlymphatic Lyve-1+ cells in both brain and spinal dura mater. Morphologically, the Lyve-1+ cells were extensively pleomorphic, sometimes elongated or round. Surprisingly, the thoracolumbal meningeal Lyve-1+ cells were predominantly round in morphology. Using endothelial specific marker VEGFR3 and macrophage markers CD68 and CD169, we observed that the isolated Lyve-1+ cells lacked endothelial cell signature, but were either CD68+ or CD169+ macrophages. Moreover, we observed that the Lyve-1+ cells colocalized with collagen fibers in the meninges, and some of Lyve-1+ cells had intracellular collagen. The study for the first time demonstrates the presence of Lyve-1 positive macrophages in the lymphatic and nonlymphatic regions in the meninges of rats.


Asunto(s)
Macrófagos/citología , Macrófagos/metabolismo , Meninges/citología , Meninges/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Femenino , Ratas , Ratas Endogámicas WKY , Médula Espinal/citología , Médula Espinal/metabolismo
7.
Mol Neurobiol ; 56(1): 621-631, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29770957

RESUMEN

One of the key features of misfolded tau in human neurodegenerative disorders is its propagation from one brain area into many others. In the last decade, in vivo tau spreading has been replicated in several mouse transgenic models expressing mutated human tau as well as in normal non-transgenic mice. In this study, we demonstrate for the first time that insoluble tau isolated from human AD brain induces full-blown neurofibrillary pathology in a sporadic rat model of tauopathy expressing non-mutated truncated tau protein. By using specific monoclonal antibodies, we were able to monitor the spreading of tau isolated from human brain directly in the rat hippocampus. We found that exogenous human AD tau was able to spread from the area of injection and induce tau pathology. Interestingly, solubilisation of insoluble AD tau completely abolished the capability of tau protein to induce and spread of neurofibrillary pathology in the rat brain. Our results show that exogenous tau is able to induce and drive neurofibrillary pathology in rat model for human tauopathy in a similar way as it was described in various mouse transgenic models. Rat tau spreading model has many advantages over mouse and other organisms including size and complexity, and thus is highly suitable for identification of pathogenic mechanism of tau spreading.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ovillos Neurofibrilares/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Ratas , Ratas Transgénicas , Tauopatías/patología
8.
Front Aging Neurosci ; 11: 343, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920624

RESUMEN

Alzheimer's disease (AD), the most common tauopathy, is an age-dependent, progressive neurodegenerative disease. Epidemiological studies implicate the role of genetic background in the onset and progression of AD. Despite mutations in familial AD, several risk factors have been implicated in sporadic AD, of which the onset is unknown. In AD, there is a sequential and hierarchical spread of tau pathology to other brain areas. Studies have strived to understand the factors that influence this characteristic spread. Using transgenic rat models with different genetic backgrounds, we reported that the genetic background may influence the manifestation of neurofibrillary pathology. In this study we investigated whether genetic background has an influence in the spread of tau pathology, using hippocampal inoculations of insoluble tau from AD brains in rodent models of tauopathy with either a spontaneously hypertensive (SHR72) or Wistar-Kyoto (WKY72) genetic background. We observed that insoluble tau from human AD induced AT8-positive neurofibrillary structures in the hippocampus of both lines. However, there was no significant difference in the amount of neurofibrillary structures, but the extent of spread was prominent in the W72 line. On the other hand, we observed significantly higher levels of AT8-positive structures in the parietal and frontal cortical areas in W72 when compared to SHR72. Interestingly, we also observed that the microglia in these brain areas in W72 were predominantly phagocytic in morphology (62.4% in parietal and 47.3% in frontal), while in SHR72 the microglia were either reactive or ramified (67.2% in parietal and 84.7% in frontal). The microglia in the hippocampus and occipital cortex in both lines were reactive or ramified structures. Factors such as gender or age are not responsible for the differences observed in these animals. Put together, our results, for the first time, show that the immune response modulating genetic variability is one of the factors that influences the propagation of tau neurofibrillary pathology.

9.
Cell Mol Neurobiol ; 38(6): 1207-1214, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29948552

RESUMEN

Despite years of research, Alzheimer's disease (AD) remains incurable and thus poses a major health challenge in coming years. This neurodegenerative disease belongs to a heterogeneous group of human tauopathies, characterized by the extracellular deposition of beta amyloid-Aß and intracellular accumulation of tau protein in neuronal and glial cells, whereby tau pathology best correlates with disease progression. For decades, several disease-modifying agents were brought to clinical studies with promising efficacy in preclinical trials; however, all of the subsequent clinical trials failed. Therefore, the pursuit for therapeutic agents for the treatment of AD and other tauopathies still continue. Recent evidences show previously unidentified role of peripheral immune system in regulating the inflammatory status of the brain, mainly the dendritic cells. A decrease in functionality and count of dendritic cells has been observed in Alzheimer's disease. Here, we discuss a potential role of dendritic cell-based vaccines as therapeutic approach in ameliorating disease pathogenesis in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/metabolismo , Células Dendríticas/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/efectos de los fármacos , Humanos , Neuronas/metabolismo , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo
10.
J Comp Neurol ; 526(11): 1777-1789, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29633258

RESUMEN

Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain.


Asunto(s)
Deficiencias en la Proteostasis/genética , Tauopatías/genética , Proteínas tau/genética , Envejecimiento , Animales , Conducta Animal , Encéfalo/patología , Cognición , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Microtúbulos/metabolismo , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Enfermedades del Sistema Nervioso/genética , Ovillos Neurofibrilares/patología , Equilibrio Postural , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/psicología , Ratas , Ratas Transgénicas , Trastornos de la Sensación/genética , Trastornos de la Sensación/patología
11.
J Alzheimers Dis ; 54(2): 831-43, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27567836

RESUMEN

Alzheimer's disease (AD) represents the most common neurodegenerative disorder. Several animal models have been developed in order to test pathophysiological mechanisms of the disease and to predict effects of pharmacological interventions. Here we examine the molecular and behavioral features of R3m/4 transgenic mice expressing human non-mutated truncated tau protein (3R tau, aa151-391) that were previously used for efficacy testing of passive tau vaccine. The mouse model reliably recapitulated crucial histopathological features of human AD, such as pre-tangles, neurofibrillary tangles, and neuropil threads. The pathology was predominantly located in the brain stem. Transgenic mice developed mature sarkosyl insoluble tau complexes consisting of mouse endogenous and human truncated and hyperphosphorylated forms of tau protein. The histopathological and biochemical features were accompanied by significant sensorimotor impairment and reduced lifespan. The sensorimotor impairment was monitored by a highly sensitive, fully-automated tool that allowed us to assess early deficit in gait and locomotion. We suggest that the novel transgenic mouse model can serve as a valuable tool for analysis of the therapeutic efficacy of tau vaccines for AD therapy.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ovillos Neurofibrilares/metabolismo , Tauopatías/metabolismo , Proteínas tau/biosíntesis , Animales , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovillos Neurofibrilares/patología , Tauopatías/patología
12.
J Comp Neurol ; 524(4): 874-95, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26239295

RESUMEN

Canine cognitive impairment syndrome (CDS) represents a group of symptoms related to the aging of the canine brain. These changes ultimately lead to a decline of memory function and learning abilities, alteration of social interaction, impairment of normal housetraining, and changes in sleep-wake cycle and general activity. We have clinically examined 215 dogs, 28 of which underwent autopsy. With canine brains, we performed extensive analysis of pathological abnormalities characteristic of human Alzheimer's disease and frontotemporal lobar degeneration, including ß-amyloid senile plaques, tau neurofibrillary tangles, and fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP43) inclusions. Most demented dogs displayed senile plaques, mainly in the frontal and temporal cortex. Tau neurofibrillary inclusions were found in only one dog. They were identified with antibodies used to detect tau neurofibrillary lesions in the human brain. The inclusions were also positive for Gallyas silver staining. As in humans, they were distributed mainly in the entorhinal cortex, hippocampus, and temporal cortex. On the other hand, FUS and TDP43 aggregates were not present in any of the examined brain samples. We also found that CDS was characterized by the presence of reactive and senescent microglial cells in the frontal cortex. Our transcriptomic study revealed a significant dysregulation of genes involved in neuroinflammation. Finally, we analyzed tau phosphoproteome in the synaptosomes. Proteomic studies revealed a significant increase of hyperphosphorylated tau in synaptosomes of demented dogs compared with nondemented dogs. This study suggests that cognitive decline in dogs is related to the tau synaptic impairment and neuroinflammation. J. Comp. Neurol. 524:874-895, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Enfermedades de los Perros/metabolismo , Sinaptosomas/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Trastornos del Conocimiento/patología , Proteínas de Unión al ADN/metabolismo , Enfermedades de los Perros/patología , Perros , Femenino , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Masculino , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuroinmunomodulación/fisiología , Fosforilación , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/veterinaria , Proteína FUS de Unión a ARN/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Sinaptosomas/patología
13.
Transl Neurosci ; 6(1): 214-226, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28123806

RESUMEN

Synapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer's disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer's disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...