Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35579426

RESUMEN

For some inducible genes, the rate and molecular mechanism of transcriptional activation depend on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation, and requires both changes in chromatin structure and recruitment of poised RNA polymerase II (RNAPII) to the promoter. Memory of inositol starvation in budding yeast involves a positive feedback loop between transcription factor-dependent interaction with the nuclear pore complex and histone H3 lysine 4 dimethylation (H3K4me2). While H3K4me2 is essential for recruitment of RNAPII and faster reactivation, RNAPII is not required for H3K4me2. Unlike RNAPII-dependent H3K4me2 associated with transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and, upon degradation of an essential transcription factor, is inherited through multiple cell cycles. The writer of this mark (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Elife ; 102021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34002694

RESUMEN

Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.


Asunto(s)
Cromatina/metabolismo , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular , Cromatina/genética , Simulación por Computador , Poro Nuclear/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
3.
Elife ; 62017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537556

RESUMEN

The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Diploidia , Saccharomyces cerevisiae/genética
4.
Nucleus ; 3(6): 487-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23099887

RESUMEN

Genomes are spatially organized on many levels and the positioning of genes within the nucleus contributes to their proper expression. This positioning can also result in the clustering of genes with similar expression patterns, a phenomenon sometimes called "gene kissing." We have found that yeast genes are targeted to the nuclear periphery through interaction of the nuclear pore complex with small, cis-acting "DNA zip codes" in their promoters. Our recent study demonstrated that genes with the same zip codes cluster together at the nuclear periphery. The zip codes were necessary and sufficient to induce interchromosomal clustering. Finally, we identified a transcription factor (Put3) that binds to the GRS I zip code. Put3 binds to GRS I and is required for both GRS I-dependent positioning at the nuclear periphery and interchromosomal clustering of GRS I-targeted genes. We speculate that our findings might provide insight into other types of gene kissing, some of which also require cis-acting DNA sequences and trans-acting proteins.


Asunto(s)
Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Análisis por Conglomerados , Regulación Fúngica de la Expresión Génica , Glicina-ARNt Ligasa/genética , Glicina-ARNt Ligasa/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell ; 40(1): 112-25, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932479

RESUMEN

DNA "zip codes" in the promoters of yeast genes confer interaction with the NPC and localization at the nuclear periphery upon activation. Some of these genes exhibit transcriptional memory: after being repressed, they remain at the nuclear periphery for several generations, primed for reactivation. Transcriptional memory requires the histone variant H2A.Z. We find that targeting of active INO1 and recently repressed INO1 to the nuclear periphery is controlled by two distinct and independent mechanisms involving different zip codes and different interactions with the NPC. An 11 base pair memory recruitment sequence (MRS) in the INO1 promoter controls both peripheral targeting and H2A.Z incorporation after repression. In cells lacking either the MRS or the NPC protein Nup100, INO1 transcriptional memory is lost, leading to nucleoplasmic localization after repression and slower reactivation of the gene. Thus, interaction of recently repressed INO1 with the NPC alters its chromatin structure and rate of reactivation.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Poro Nuclear/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , ADN de Hongos/química , Histonas/genética , Inositol/metabolismo , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
6.
Nat Cell Biol ; 12(2): 111-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20098417

RESUMEN

Many genes in Saccharomyces cerevisiae are recruited to the nuclear periphery after transcriptional activation. We have identified two gene recruitment sequences (GRS I and II) from the promoter of the INO1 gene that target the gene to the nuclear periphery. These GRSs function as DNA zip codes and are sufficient to target a nucleoplasmic locus to the nuclear periphery. Targeting requires components of the nuclear pore complex (NPC) and a GRS is sufficient to confer a physical interaction with the NPC. GRS I elements are enriched in promoters of genes that interact with the NPC, and genes that are induced by protein folding stress. Full transcriptional activation of INO1 and another GRS-containing gene requires GRS-mediated targeting of the promoter to the nuclear periphery. Finally, GRS I also functions as a DNA zip code in Schizosaccharomyces pombe, suggesting that this mechanism of targeting to the nuclear periphery has been conserved over approximately one billion years of evolution.


Asunto(s)
Núcleo Celular/metabolismo , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , ADN de Hongos/genética , Genoma Fúngico/genética , Modelos Biológicos , Mio-Inositol-1-Fosfato Sintasa/genética , Poro Nuclear/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...