Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241607

RESUMEN

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Asunto(s)
Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/fisiología , Ribonucleasas/fisiología , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Microscopía por Crioelectrón/métodos , Endonucleasas/metabolismo , Células HEK293 , Humanos , Conformación Molecular , ARN/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleasas/metabolismo , Ribonucleasas/ultraestructura
2.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29551272

RESUMEN

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Ingeniería Genética/métodos , Ingeniería de Proteínas/métodos , ARN/análisis , Empalme Alternativo , Animales , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , Ruminococcus , Análisis de Secuencia de ARN , Transcriptoma
3.
Mol Cell Biol ; 35(23): 4053-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26391951

RESUMEN

The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Cromosoma X/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatina/química , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Células HEK293 , Histonas/química , Humanos , Lisina/análisis , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
4.
PLoS Genet ; 10(3): e1004240, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651406

RESUMEN

Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background.


Asunto(s)
Proteínas de Drosophila/genética , Heterocromatina/genética , Aislamiento Reproductivo , Animales , Evolución Biológica , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Elementos Transponibles de ADN/genética , ADN Satélite/genética , Drosophila melanogaster , Genes Letales , Hibridación Genética
5.
BMC Evol Biol ; 11: 57, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21366928

RESUMEN

BACKGROUND: Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. RESULTS: Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. CONCLUSIONS: We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Evolución Molecular , Animales , Proteínas Cromosómicas no Histona/metabolismo , Clonación Molecular , Secuencia Conservada , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Femenino , Genes de Insecto , Genes Letales , Heterocromatina/metabolismo , Masculino , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos
6.
Science ; 314(5803): 1292-5, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17124320

RESUMEN

The Dobzhansky-Muller model proposes that hybrid incompatibilities are caused by the interaction between genes that have functionally diverged in the respective hybridizing species. Here, we show that Lethal hybrid rescue (Lhr) has functionally diverged in Drosophila simulans and interacts with Hybrid male rescue (Hmr), which has functionally diverged in D. melanogaster, to cause lethality in F1 hybrid males. LHR localizes to heterochromatic regions of the genome and has diverged extensively in sequence between these species in a manner consistent with positive selection. Rapidly evolving heterochromatic DNA sequences may be driving the evolution of this incompatibility gene.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila/genética , Evolución Molecular , Genes de Insecto , Hibridación Genética , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , Mapeo Cromosómico , Cruzamientos Genéticos , Drosophila/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Especiación Genética , Masculino , Datos de Secuencia Molecular , Selección Genética , Transformación Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA