Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4355, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778023

RESUMEN

Phages are increasingly considered promising alternatives to target drug-resistant bacterial pathogens. However, their often-narrow host range can make it challenging to find matching phages against bacteria of interest. Current computational tools do not accurately predict interactions at the strain level in a way that is relevant and properly evaluated for practical use. We present PhageHostLearn, a machine learning system that predicts strain-level interactions between receptor-binding proteins and bacterial receptors for Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in the laboratory, in the clinically relevant setting of finding matching phages against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC of up to 81.8% in silico and maintains this performance in laboratory validation. Our approach provides a framework for developing and evaluating phage-host prediction methods that are useful in practice, which we believe to be a meaningful contribution to the machine-learning-guided development of phage therapeutics and diagnostics.


Asunto(s)
Bacteriófagos , Especificidad del Huésped , Klebsiella , Aprendizaje Automático , Bacteriófagos/fisiología , Klebsiella/virología , Simulación por Computador
2.
Viruses ; 16(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400074

RESUMEN

The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.


Asunto(s)
Bacteriófagos , Humanos , Bélgica , Ambiente , Ecología , Estudiantes
3.
Appl Environ Microbiol ; 90(3): e0184623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319087

RESUMEN

Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen Pseudomonas syringae pv. actinidiae (Psa) currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable Psa below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications. IMPORTANCE: The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the Otagovirus Psa374 which infects Psa. When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable Psa below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.


Asunto(s)
Actinidia , Bacteriófagos , Endopeptidasas , Pseudomonas syringae , Cobre , Peptidoglicano , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Antibacterianos/farmacología , Actinidia/microbiología
4.
Appl Microbiol Biotechnol ; 108(1): 118, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204128

RESUMEN

Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 µg) combined with either a low (23.5 µg) or high (235.0 µg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.


Asunto(s)
Endopeptidasas , Mastitis Bovina , Infecciones Estreptocócicas , Streptococcus , Femenino , Animales , Bovinos , Ratones , Cloxacilina/uso terapéutico , Lactancia , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Modelos Animales de Enfermedad , Mastitis Bovina/tratamiento farmacológico
5.
Microbiol Spectr ; 11(6): e0181323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37971248

RESUMEN

IMPORTANCE: Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Antibacterianos/farmacología , Bacterias Gramnegativas
6.
Microb Biotechnol ; 16(12): 2367-2386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853918

RESUMEN

Bacteriophage-derived endolysins are a novel class of antimicrobials known to rapidly kill bacteria, including antibiotic-resistant strains. We here engineered endolysins against the bovine mastitis pathogens Streptococcus uberis, Streptococcus agalactiae and Streptococcus dysgalactiae, also targeting intracellular survival and biofilm formation. For this purpose, high-throughput DNA assembly was used to create a library with >80,000 theoretical endolysin variants for screening of their bacteriolytic activity against Gram-positive isolates from (sub)clinically affected cows. This lytic activity was evaluated by turbidity reduction and time-kill assays in phosphate-buffered saline and pasteurized whole cow's milk to allow a rank up of the most potent leading candidates. A top candidate was selected with a 4.0 log killing efficacy against S. uberis, also showing similar activity against S. agalactiae and S. dysgalactiae. This top candidate eradicated S. uberis biofilm and showed intracellular activity in two bovine mammary epithelial cell lines as was confirmed by confocal microscopy. A potentiating effect on cloxacillin, a beta-lactam penicillin used to intramammarily treat bovine Gram-positive mastitis, was observed for this top candidate endolysin in raw cow's milk from (sub)clinically infected udders. Our in vitro results indicate that engineered endolysins may have a future role as add-on in the treatment of bovine streptococcal mastitis.


Asunto(s)
Mastitis Bovina , Infecciones Estreptocócicas , Femenino , Bovinos , Animales , Humanos , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/microbiología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Endopeptidasas/genética , Endopeptidasas/farmacología
7.
Cells ; 12(15)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37566095

RESUMEN

In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.


Asunto(s)
Bacteriófagos , N-Acetil Muramoil-L-Alanina Amidasa
8.
Virol J ; 20(1): 174, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550759

RESUMEN

BACKGROUND: The interaction between bacteriophages and their hosts is intricate and highly specific. Receptor-binding proteins (RBPs) of phages such as tail fibers and tailspikes initiate the infection process. These RBPs bind to diverse outer membrane structures, including the O-antigen, which is a serogroup-specific sugar-based component of the outer lipopolysaccharide layer of Gram-negative bacteria. Among the most virulent Escherichia coli strains is the Shiga toxin-producing E. coli (STEC) pathotype dominated by a subset of O-antigen serogroups. METHODS: Extensive phylogenetic and structural analyses were used to identify and validate specificity correlations between phage RBP subtypes and STEC O-antigen serogroups, relying on the principle of horizontal gene transfer as main driver for RBP evolution. RESULTS: We identified O-antigen specific RBP subtypes for seven out of nine most prevalent STEC serogroups (O26, O45, O103, O104, O111, O145 and O157) and seven additional E. coli serogroups (O2, O8, O16, O18, 4s/O22, O77 and O78). Eight phage genera (Gamaleya-, Justusliebig-, Kaguna-, Kayfuna-, Kutter-, Lederberg-, Nouzilly- and Uetakeviruses) emerged for their high proportion of serogroup-specific RBPs. Additionally, we reveal sequence motifs in the RBP region, potentially serving as recombination hotspots between lytic phages. CONCLUSION: The results contribute to a better understanding of mosaicism of phage RBPs, but also demonstrate a method to identify and validate new RBP subtypes for current and future emerging serogroups.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Serogrupo , Infecciones por Escherichia coli/microbiología , Antígenos O/genética , Antígenos O/metabolismo , Transferencia de Gen Horizontal , Filogenia , Escherichia coli Shiga-Toxigénica/genética , Heces/microbiología
9.
Viruses ; 15(5)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37243298

RESUMEN

The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven. The meeting program covered three thematic sessions launched by international keynote speakers: (1) virus-host interactions, (2) viral ecology, evolution and diversity and (3) present and future applications. During the one-day symposium, four invited keynote lectures, ten selected talks and eight student pitches were given along with 41 presented posters. The meeting hosted 155 participants from twelve countries.


Asunto(s)
Interacciones Microbiota-Huesped , Virus , Humanos , Bélgica
10.
Appl Microbiol Biotechnol ; 107(11): 3621-3636, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37133800

RESUMEN

Citrobacter koseri is an emerging Gram-negative bacterial pathogen, which causes urinary tract infections. We isolated and characterized a novel S16-like myovirus CKP1 (vB_CkoM_CkP1), infecting C. koseri. CkP1 has a host range covering the whole C. koseri species, i.e., all strains that were tested, but does not infect other species. Its linear 168,463-bp genome contains 291 coding sequences, sharing sequence similarity with the Salmonella phage S16. Based on surface plasmon resonance and recombinant green florescence protein fusions, the tail fiber (gp267) was shown to decorate C. koseri cells, binding with a nanomolar affinity, without the need of accessory proteins. Both phage and the tail fiber specifically bind to bacterial cells by the lipopolysaccharide polymer. We further demonstrate that CkP1 is highly stable towards different environmental conditions of pH and temperatures and is able to control C. koseri cells in urine samples. Altogether, CkP1 features optimal in vitro characteristics to be used both as a control and detection agent towards drug-resistant C. koseri infections. KEY POINTS: • CkP1 infects all C. koseri strains tested • CkP1 recognizes C. koseri lipopolysaccharide through its long tail fiber • Both phage CkP1 and its tail fiber can be used to treat or detect C. koseri pathogens.


Asunto(s)
Bacteriófagos , Citrobacter koseri , Bacteriófagos/genética , Citrobacter koseri/genética , Lipopolisacáridos , Especificidad del Huésped
11.
Compr Rev Food Sci Food Saf ; 22(3): 2235-2266, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37009835

RESUMEN

One of the biggest challenges faced by food producers is ensuring microbiological safety. Despite strict criteria for food products, foodborne diseases are a global problem and pose a real risk to consumers. Therefore, it is necessary to identify new and more effective methods for eliminating pathogens from food and the food processing environment. According to the European Food Safety Authority (EFSA), the most common foodborne diseases are caused by Campylobacter, Salmonella, Yersinia, Escherichia coli, and Listeria. Out of the five listed, four are Gram-negative bacteria. Our review focuses on the use of bacteriophages, which are ubiquitous bacterial viruses, and bacteriophage endolysins to eliminate Gram-negative pathogens. Endolysins cleave specific bonds within the peptidoglycan (PG) of the bacterial cell, causing the cell to burst. Single phages or phage cocktails, which are, in some instances, commercially available products, eliminate pathogenic bacteria in livestock and various food matrices. Endolysins have matured as the most advanced class of antibacterial agents in the clinical sector, but their use in food protection is highly unexplored. Advanced molecular engineering techniques, different formulations, protein encapsulation, and the addition of outer membrane (OM) permeabilization agents enhance the activity of lysins against Gram-negative pathogens. This creates space for groundbreaking research on the use of lysins in the food sector.


Asunto(s)
Bacteriófagos , Campylobacter , Enfermedades Transmitidas por los Alimentos , Humanos , Antibacterianos/química , Bacterias , Enfermedades Transmitidas por los Alimentos/prevención & control
12.
Appl Microbiol Biotechnol ; 107(9): 2755-2770, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36941434

RESUMEN

Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: • Construction of designer cellulosomes is a multi-step process. • Designer cellulosome research deals with multivariate construction challenges. • Boosting designer cellulosome efficiency requires exploring a vast design space.


Asunto(s)
Celulosomas , Celulosomas/metabolismo , Celulosa/metabolismo , Membrana Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Bacterianas/metabolismo
13.
Pharmaceutics ; 14(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36559047

RESUMEN

The silent pandemic of antibiotic resistance is thriving, prompting the urgent need for the development of new antibacterial drugs. However, within the preclinical pipeline, in vitro screening conditions can differ significantly from the final in vivo settings. To bridge the gap between in vitro and in vivo assays, we developed a pig-skin-based bioluminescent ex vivo burn wound infection model, enabling real-time assessment of antibacterials in a longitudinal, non-destructive manner. We provide a proof-of-concept for A. baumannii NCTC13423, a multidrug-resistant clinical isolate, which was equipped with the luxCDABE operon as a reporter using a Tn7-based tagging system. This bioluminescence model provided a linear correlation between the number of bacteria and a broad dynamic range (104 to 109 CFU). This longitudinal model was subsequently validated using a fast-acting enzybiotic, 1D10. Since this model combines a realistic, clinically relevant yet strictly controlled environment with real-time measurement of bacterial burden, we put forward this ex vivo model as a valuable tool to assess the preclinical potential of novel phage-inspired enzybiotics.

14.
Nat Commun ; 13(1): 7241, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433970

RESUMEN

The Klebsiella jumbo myophage ϕKp24 displays an unusually complex arrangement of tail fibers interacting with a host cell. In this study, we combine cryo-electron microscopy methods, protein structure prediction methods, molecular simulations, microbiological and machine learning approaches to explore the capsid, tail, and tail fibers of ϕKp24. We determine the structure of the capsid and tail at 4.1 Šand 3.0 Šresolution. We observe the tail fibers are branched and rearranged dramatically upon cell surface attachment. This complex configuration involves fourteen putative tail fibers with depolymerase activity that provide ϕKp24 with the ability to infect a broad panel of capsular polysaccharide (CPS) types of Klebsiella pneumoniae. Our study provides structural and functional insight into how ϕKp24 adapts to the variable surfaces of capsulated bacterial pathogens, which is useful for the development of phage therapy approaches against pan-drug resistant K. pneumoniae strains.


Asunto(s)
Bacteriófagos , Microscopía por Crioelectrón , Klebsiella pneumoniae , Klebsiella , Cápside , Proteínas de la Cápside
15.
Appl Microbiol Biotechnol ; 106(17): 5495-5509, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35869373

RESUMEN

Cellulosomes are multi-enzyme complexes produced by specialised micro-organisms. The spatial proximity of synergistically acting enzymes incorporated in these naturally occurring complexes supports the efficient hydrolysis of lignocellulosic biomass. Several functional designer cellulosomes, incorporating naturally non-cellulosomal cellulases, have been constructed and can be used for cellulose saccharification. However, in lignocellulosic biomass, cellulose is tightly intertwined with several hemicelluloses and lignin. One of the most abundant hemicelluloses interacting with cellulose microfibrils is xyloglucan, and degradation of these polymers is crucial for complete saccharification. Yet, designer cellulosome studies focusing on the incorporation of hemicellulases have been limited. Here, we report the conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode. Therefore, we constructed multiple docking enzyme variants of C. japonicus endoxyloglucanase, ß-1,2-galactosidase, α-1,6 xylosidase and ß-1,4-glucosidase, using the combinatorial VersaTile technique dedicated to the design and optimisation of modular proteins. We individually optimised the docking enzymes to degrade the xyloglucan backbone and side chains. Finally, we show that a purified designer xyloglucanosome comprising these docking enzymes was able to release xyloglucan oligosaccharides, galactose, xylose and glucose from tamarind xyloglucan. KEY POINTS: • Construction of xyloglucan-degrading designer cellulosome. • Conversion of free Cellvibrio japonicus enzymes to cellulosomal mode. • Type of linker inserted between dockerin and enzyme module affects docking enzyme activity.


Asunto(s)
Celulosomas , Proteínas Bacterianas , Celulosa , Cellvibrio , Glucanos , Xilanos
16.
Viruses ; 14(6)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746800

RESUMEN

Receptor-binding proteins (RBPs) of bacteriophages initiate the infection of their corresponding bacterial host and act as the primary determinant for host specificity. The ever-increasing amount of sequence data enables the development of predictive models for the automated identification of RBP sequences. However, the development of such models is challenged by the inconsistent or missing annotation of many phage proteins. Recently developed tools have started to bridge this gap but are not specifically focused on RBP sequences, for which many different annotations are available. We have developed two parallel approaches to alleviate the complex identification of RBP sequences in phage genomic data. The first combines known RBP-related hidden Markov models (HMMs) from the Pfam database with custom-built HMMs to identify phage RBPs based on protein domains. The second approach consists of training an extreme gradient boosting classifier that can accurately discriminate between RBPs and other phage proteins. We explained how these complementary approaches can reinforce each other in identifying RBP sequences. In addition, we benchmarked our methods against the recently developed PhANNs tool. Our best performing model reached a precision-recall area-under-the-curve of 93.8% and outperformed PhANNs on an independent test set, reaching an F1-score of 84.0% compared to 69.8%.


Asunto(s)
Receptores de Bacteriógrafos , Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Portadoras/metabolismo , Unión Proteica , Proteínas/metabolismo
17.
Antibiotics (Basel) ; 11(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625321

RESUMEN

The rising antimicrobial resistance is particularly alarming for Acinetobacter baumannii, calling for the discovery and evaluation of alternatives to treat A. baumannii infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds. We identified and characterized a depolymerase (DpoMK34) from Acinetobacter phage vB_AbaP_PMK34 active against the clinical isolate A. baumannii MK34. In silico analysis reveals a modular protein displaying a conserved N-terminal domain for anchoring to the phage tail, and variable central and C-terminal domains for enzymatic activity and specificity. AlphaFold-Multimer predicts a trimeric protein adopting an elongated structure due to a long α-helix, an enzymatic ß-helix domain and a hypervariable 4 amino acid hotspot in the most ultimate loop of the C-terminal domain. In contrast to the tail fiber of phage T3, this hypervariable hotspot appears unrelated with the primary receptor. The functional characterization of DpoMK34 revealed a mesophilic enzyme active up to 50 °C across a wide pH range (4 to 11) and specific for the capsule of A. baumannii MK34. Enzymatic degradation of the A. baumannii MK34 capsule causes a significant drop in phage adsorption from 95% to 9% after 5 min. Although lacking intrinsic antibacterial activity, DpoMK34 renders A. baumannii MK34 fully susceptible to serum killing in a serum concentration dependent manner. Unlike phage PMK34, DpoMK34 does not easily select for resistant mutants either against PMK34 or itself. In sum, DpoMK34 is a potential antivirulence compound that can be included in a depolymerase cocktail to control difficult to treat A. baumannii infections.

18.
Biotechnol Biofuels Bioprod ; 15(1): 60, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637485

RESUMEN

BACKGROUND: Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome. RESULTS: VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers. CONCLUSION: We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.

19.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163175

RESUMEN

Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5' untranslated region that is instructive for a secondary pid mRNA species, and has a 3' Rho-independent termination loop that is responsible for stability of the pid transcript.


Asunto(s)
Bacteriófago P22/genética , Regulación Viral de la Expresión Génica/genética , Bacteriófagos/genética , Expresión Génica/genética , Sistemas de Lectura Abierta/genética , Operón , Regiones Promotoras Genéticas/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/virología
20.
Microb Biotechnol ; 15(1): 370-386, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651450

RESUMEN

To meet the needs of synthetic biologists, DNA assembly methods have transformed from simple 'cut-and-paste' procedures to highly advanced, standardised assembly techniques. Implementing these standardised DNA assembly methods in biotechnological research conducted in non-model hosts, including Pseudomonas putida and Pseudomonas aeruginosa, could greatly benefit reproducibility and predictability of experimental results. SEVAtile is a Type IIs-based assembly approach, which enables the rapid and standardised assembly of genetic parts - or tiles - to create genetic circuits in the established SEVA-vector backbone. Contrary to existing DNA assembly methods, SEVAtile is an easy and straightforward method, which is compatible with any vector, both SEVA- and non-SEVA. To prove the efficiency of the SEVAtile method, a three-vector system was successfully generated to independently co-express three different proteins in P. putida and P. aeruginosa. More specifically, one of the vectors, pBGDes, enables genomic integration of assembled circuits in the Tn7 landing site, while self-replicatory vectors pSTDesX and pSTDesR enable inducible expression from the XylS/Pm and RhaRS/PrhaB expression systems, respectively. Together, we hope these vector systems will support research in both the microbial SynBio and Pseudomonas field.


Asunto(s)
Pseudomonas putida , Pseudomonas , ADN , Vectores Genéticos , Plásmidos , Pseudomonas putida/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...