Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(47): 40831-40837, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30384598

RESUMEN

The utilization of alkali salts, such as NaCl and KI, has enabled the successful growth of large single domain and fully coalesced polycrystalline two-dimensional (2D) transition-metal dichalcogenide layers. However, the impact of alkali salts on photonic and electronic properties is not fully established. In this work, we report alkali-free epitaxy of MoS2 on sapphire and benchmark the properties against alkali-assisted growth of MoS2. This study demonstrates that although NaCl can dramatically increase the domain size of monolayer MoS2 by 20 times, it can also induce strong optical and electronic heterogeneities in as-grown, large-scale films. This work elucidates that utilization of NaCl can lead to variation in growth rates, loss of epitaxy, and high density of nanoscale MoS2 particles (4 ± 0.7/µm2). Such phenomena suggest that alkali atoms play an important role in Mo and S adatom mobility and strongly influence the 2D/sapphire interface during growth. Compared to alkali-free synthesis under the same growth conditions, MoS2 growth assisted by NaCl results in >1% tensile strain in as-grown domains, which reduces photoluminescence by ∼20× and degrades transistor performance.

2.
Nanoscale ; 10(1): 336-341, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29215125

RESUMEN

Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS2/WSe2 on GaN with atomically sharp interface. Monolayer MoS2/WSe2/n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA