Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am Surg ; : 31348241241725, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565208

RESUMEN

Obesity in trauma patients is an established risk factor contributing to postoperative complications, but the relationship between body mass index (BMI) and trauma patient outcomes is not well-defined, especially when stratified by mechanism of injury. We surveyed the trauma laparotomy registry at an academic level 1 trauma center over a 3-year period to identify mortality, injury severity score, and hospital length of stay (hLOS) outcome measures across BMI classes, with further stratification by mechanism of injury: blunt vs penetrating trauma. A total of 442 patients were included with mean age 44.6 (SD = 18.7) and mean BMI 28.55 (SD = 7.37). These were subdivided into blunt trauma (n = 313) and penetrating trauma (n = 129). Within the blunt trauma subgroup, the hLOS among patients who survived hospitalization significantly increased 9% for each successive BMI class (P = .022, 95% CI = 1.29-17.5). We conclude that successive increase in BMI class is associated with longer hospital stay for blunt trauma patient survivors requiring laparotomy, though additional analysis is needed to establish this relationship to other outcome measures and among penetrating trauma patients.

2.
J Med Chem ; 66(8): 5892-5906, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37026591

RESUMEN

B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and in vivo exposure of the non-degrading isomer, CCT373567, of our recently published degrader, CCT373566. The major limitation of our inhibitors was their high topological polar surface areas (TPSA), leading to increased efflux ratios. Reducing the molecular weight allowed us to remove polarity and decrease TPSA without considerably reducing solubility. Careful optimization of these properties, as guided by pharmacokinetic studies, led to the discovery of CCT374705, a potent inhibitor of BCL6 with a good in vivo profile. Modest in vivo efficacy was achieved in a lymphoma xenograft mouse model after oral dosing.


Asunto(s)
Linfoma de Células B Grandes Difuso , Quinolonas , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/química , Factores de Transcripción
3.
J Surg Res ; 288: 290-297, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058985

RESUMEN

INTRODUCTION: There are many barriers to the implementation of an enhanced recovery after surgery (ERAS) pathway. The aim of this study was to compare surgeon and anesthesia perceptions with current practices prior to the initiation of an ERAS protocol in pediatric colorectal patients and to use that information to inform ERAS implementation. METHODS: This was a mixed method single institution study of barriers to implementation of an ERAS pathway at a free-standing children's hospital. Anesthesiologists and surgeons at a free-standing children's hospital were surveyed regarding current practices of ERAS components. A retrospective chart review was performed of 5- to 18-y-old patients undergoing colorectal procedures between 2013 and 2017, followed by the initiation of an ERAS pathway, and a prospective chart review for 18 mo postimplementation. RESULTS: The response rate was 100% (n = 7) for surgeons and 60% (n = 9) for anesthesiologists. Preoperative nonopioid analgesics and regional anesthesia were rarely used. Intraoperatively, 54.7% of patients had a fluid balance of <10 cc/kg/h and normothermia was achieved in only 38.7%. Mechanical bowel prep was frequently utilized (48%). Median nil per os time was significantly longer than required at 12 h. Postoperatively, 42.9% of surgeons reported that patients could have clears on postoperative day zero, 28.6% on postoperative day one, and 28.6% after flatus. In reality, 53.3% of patients were started on clears after flatus, with a median time of 2 d. Most surgeons (85.7%) expected patients to get out of bed once awake from anesthesia; however, median time that patients were out of bed was postoperative day one. While most surgeons reported frequent use of acetaminophen and/or ketorolac, only 69.3% received any nonopioid analgesic postoperatively, with only 41.3% receiving two or more nonopioid analgesics. Nonopioid analgesia showed the highest rates of improvement from retrospective to prospective: preoperative use of analgesics increased from 5.3% to 41.2% (P < 0.0001), postoperative use of acetaminophen increased by 27.4% (P = 0.5), Toradol by 45.5% (P = 0.11), and gabapentin by 86.7% (P < 0.0001). Postoperative nausea/vomiting prophylaxis with >1 class of antiemetic increased from 8% to 47.1% (P < 0.001). The length of stay was unchanged (5.7 versus 4.4 d, P = 0.14). CONCLUSIONS: For the successful implementation of an ERAS protocol, perceptions versus reality must be assessed to determine current practices and identify barriers to implementation.


Asunto(s)
Analgésicos no Narcóticos , Neoplasias Colorrectales , Recuperación Mejorada Después de la Cirugía , Humanos , Niño , Analgésicos no Narcóticos/uso terapéutico , Acetaminofén , Estudios Retrospectivos , Estudios Prospectivos , Flatulencia/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Tiempo de Internación
4.
J Med Chem ; 65(12): 8191-8207, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35653645

RESUMEN

The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.


Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
5.
J Med Chem ; 65(12): 8169-8190, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35657291

RESUMEN

To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.


Asunto(s)
Dominio BTB-POZ , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6
6.
J Med Chem ; 64(23): 17079-17097, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34846884

RESUMEN

We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Antineoplásicos/química , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Solubilidad , Relación Estructura-Actividad
7.
Cureus ; 13(4): e14663, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-34055514

RESUMEN

The novel coronavirus disease 2019 (COVID-19) has placed a burden on critical care facilities worldwide. Patients who remain critically unwell with COVID-19 require prolonged periods of ventilation, and the burden of both the resources during a pandemic and the slow respiratory wean must be managed. Percutaneous tracheostomies are commonplace in long-term intensive care patients, yet little is known about their role in COVID-19, particularly how operator safety is maintained during the procedure. Here, we describe an approach designed to minimize cross-infection of the operators undertaking percutaneous tracheostomies within this subset of patients. Focus should be on non-technical skills, prolonged periods of pre-oxygenation, and minimal ventilation during the procedure to minimize the risk of aerosolization generated from an open breathing system. Our modified technique demonstrates successful early experiences with no operators testing positive for COVID-19 or developing symptoms following any performed procedure.

8.
J Med Chem ; 63(8): 4047-4068, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32275432

RESUMEN

Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing.


Asunto(s)
Bencimidazoles/administración & dosificación , Bencimidazoles/química , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
BMC Biol ; 16(1): 29, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510700

RESUMEN

BACKGROUND: Cell migration is essential for development and tissue repair, but it also contributes to disease. Rho GTPases regulate cell migration, but a comprehensive analysis of how each Rho signalling component affects migration has not been carried out. RESULTS: Through an RNA interference screen, and using a prostate cancer cell line, we find that approximately 25% of Rho network components alter migration. Some genes enhance migration while others decrease basal and/or hepatocyte growth factor-stimulated migration. Surprisingly, we identify RhoH as a screen hit. RhoH expression is normally restricted to haematopoietic cells, but we find it is expressed in multiple epithelial cancer cell lines. High RhoH expression in samples from prostate cancer patients correlates with earlier relapse. RhoH depletion reduces cell speed and persistence and decreases migratory polarity. Rac1 activity normally localizes to the front of migrating cells at areas of dynamic membrane movement, but in RhoH-depleted cells active Rac1 is localised around the whole cell periphery and associated with membrane regions that are not extending or retracting. RhoH interacts with Rac1 and with several p21-activated kinases (PAKs), which are Rac effectors. Similar to RhoH depletion, PAK2 depletion increases cell spread area and reduces cell migration. In addition, RhoH depletion reduces lamellipodium extension induced by PAK2 overexpression. CONCLUSIONS: We describe a novel role for RhoH in prostate cancer cell migration. We propose that RhoH promotes cell migration by coupling Rac1 activity and PAK2 to membrane protrusion. Our results also suggest that RhoH expression levels correlate with prostate cancer progression.


Asunto(s)
Movimiento Celular/genética , Pruebas Genéticas/métodos , Neoplasias de la Próstata/genética , Interferencia de ARN/fisiología , Factores de Transcripción/genética , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP rho/genética , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Células COS , Chlorocebus aethiops , Detección Precoz del Cáncer/métodos , Células HT29 , Humanos , Células MCF-7 , Masculino , Neoplasias de la Próstata/diagnóstico , Factores de Transcripción/análisis , Proteína de Unión al GTP rac1/análisis , Proteínas de Unión al GTP rho/análisis
10.
Clin Cancer Res ; 24(10): 2395-2407, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29391353

RESUMEN

Purpose: Myeloma is a plasma cell malignancy characterized by the overproduction of immunoglobulin, and is therefore susceptible to therapies targeting protein homeostasis. We hypothesized that heat shock factor 1 (HSF1) was an attractive therapeutic target for myeloma due to its direct regulation of transcriptional programs implicated in both protein homeostasis and the oncogenic phenotype. Here, we interrogate HSF1 as a therapeutic target in myeloma using bioinformatic, genetic, and pharmacologic means.Experimental Design: To assess the clinical relevance of HSF1, we analyzed publicly available patient myeloma gene expression datasets. Validation of this novel target was conducted in in vitro experiments using shRNA or inhibitors of the HSF1 pathway in human myeloma cell lines and primary cells as well as in in vivo human myeloma xenograft models.Results: Expression of HSF1 and its target genes were associated with poorer myeloma patient survival. ShRNA-mediated knockdown or pharmacologic inhibition of the HSF1 pathway with a novel chemical probe, CCT251236, or with KRIBB11, led to caspase-mediated cell death that was associated with an increase in EIF2α phosphorylation, CHOP expression and a decrease in overall protein synthesis. Importantly, both CCT251236 and KRIBB11 induced cytotoxicity in human myeloma cell lines and patient-derived primary myeloma cells with a therapeutic window over normal cells. Pharmacologic inhibition induced tumor growth inhibition and was well-tolerated in a human myeloma xenograft murine model with evidence of pharmacodynamic biomarker modulation.Conclusions: Taken together, our studies demonstrate the dependence of myeloma cells on HSF1 for survival and support the clinical evaluation of pharmacologic inhibitors of the HSF1 pathway in myeloma. Clin Cancer Res; 24(10); 2395-407. ©2018 AACRSee related commentary by Parekh, p. 2237.


Asunto(s)
Biomarcadores de Tumor , Supervivencia Celular/genética , Factores de Transcripción del Choque Térmico/genética , Mieloma Múltiple/genética , Animales , Antineoplásicos/farmacología , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Transcripción del Choque Térmico/antagonistas & inhibidores , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones , Terapia Molecular Dirigida , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/mortalidad , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cell Signal ; 44: 127-137, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29329780

RESUMEN

Cancer cells are able to survive under conditions that cause endoplasmic reticulum stress (ER-stress), and can adapt to this stress by upregulating cell-survival signalling pathways and down-regulating apoptotic pathways. The cellular response to ER-stress is controlled by the unfolded protein response (UPR). Small Rho family GTPases are linked to many cell responses including cell growth and apoptosis. In this study, we investigate the function of small GTPases in cell survival under ER-stress. Using siRNA screening we identify that RAC1 promotes cell survival under ER-stress in cells with an oncogenic N92I RAC1 mutation. We uncover a novel connection between the UPR and N92I RAC1, whereby RAC1 attenuates phosphorylation of EIF2S1 under ER-stress and drives over-expression of ATF4 in basal conditions. Interestingly, the UPR connection does not drive resistance to ER-stress, as knockdown of ATF4 did not affect this. We further investigate cancer-associated kinase signalling pathways and show that RAC1 knockdown reduces the activity of AKT and ERK, and using a panel of clinically important kinase inhibitors, we uncover a role for MEK/ERK, but not AKT, in cell viability under ER-stress. A known major activator of ERK phosphorylation in cancer is oncogenic NRAS and we show that knockdown of NRAS in cells, which bear a Q61 NRAS mutation, sensitises to ER-stress. These findings highlight a novel mechanism for resistance to ER-stress through oncogenic activation of MEK/ERK signalling by small GTPases.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Línea Celular Tumoral , Humanos , Transducción de Señal , Respuesta de Proteína Desplegada
12.
Mol Cell Biol ; 35(12): 2186-202, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870107

RESUMEN

The unfolded protein response (UPR) remediates endoplasmic reticulum (ER) stress. IRE1, a component of the UPR, senses misfolded protein and cleaves XBP1 mRNA, which is ligated to code for the prosurvival transcription factor. IRE1 also cleaves other mRNAs preceding their degradation, termed regulated IRE1-dependent mRNA decay (RIDD). It has been reported that RIDD may be involved in cell viability under stress and therefore may contribute to cancer cell viability. To investigate RIDD targets that may have functional relevance in cell survival, we identified conserved RIDD targets containing stringent IRE1 RNase target sequences. Using a systematic bioinformatics approach with quantitative-PCR (qPCR) validation, we show that only BLOC1S1 is consistently a RIDD target in all systems tested. Using cancer cell lines, we show that BLOC1S1 is specifically cleaved by IRE1 at guanine 444, but only under conditions of IRE1 hyperactivation. BLOC1S1 cleavage is temporally separate from XBP1 splicing, occurring after depletion of unspliced XBP1. Expression of an uncleavable BLOC1S1 mutant or inhibition of RIDD using an IRE1 RNase inhibitor did not affect cellular recovery from acute ER stress. These data demonstrate that although hyperactivated IRE1 specifically cleaves BLOC1S1, this cleavage event and RIDD as a whole are dispensable for cell viability under acute stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Datos de Secuencia Molecular , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Proteína 1 de Unión a la X-Box
13.
Clin Vaccine Immunol ; 22(3): 344-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25630406

RESUMEN

Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Streptococcus pyogenes/química , Streptococcus pyogenes/inmunología , Adolescente , Factores de Edad , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Sueros Inmunes/inmunología , Inmunización Pasiva , Masculino , Ratones , Filogenia , Conejos , Proteínas Recombinantes , Alineación de Secuencia , Infecciones Estreptocócicas/inmunología
14.
BMC Biochem ; 15: 3, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24524643

RESUMEN

BACKGROUND: Endoplasmic reticulum stress, caused by the presence of misfolded proteins, activates the stress sensor inositol-requiring enzyme 1α (IRE1α). The resulting increase in IRE1α RNase activity causes sequence-specific cleavage of X-box binding protein 1 (XBP1) mRNA, resulting in upregulation of the unfolded protein response and cellular adaptation to stress. The precise mechanism of human IRE1α activation is currently unclear. The role of IRE1α kinase activity is disputed, as results from the generation of various kinase-inactivating mutations in either yeast or human cells are discordant. Kinase activity can also be made redundant by small molecules which bind the ATP binding site. We set out to uncover a role for IRE1α kinase activity using wild-type cytosolic protein constructs. RESULTS: We show that concentration-dependent oligomerisation is sufficient to cause IRE1α cytosolic domain RNase activity in vitro. We demonstrate a role for the kinase activity by showing that autophosphorylation enhances RNase activity. Inclusion of the IRE1α linker domain in protein constructs allows hyperphosphorylation and further enhancement of RNase activity, highlighting the importance of kinase activity. We show that IRE1α phosphorylation status correlates with an increased propensity to form oligomeric complexes and that forced dimerisation causes great enhancement in RNase activity. In addition we demonstrate that even when IRE1α is forced to dimerise, by a GST-tag, phospho-enhancement of activity is still observed. CONCLUSIONS: Taken together these experiments support the hypothesis that phosphorylation is important in modulating IRE1α RNase activity which is achieved by increasing the propensity of IRE1α to dimerise. This work supports the development of IRE1α kinase inhibitors for use in the treatment of secretory cancers.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Estrés del Retículo Endoplásmico , Endorribonucleasas/química , Endorribonucleasas/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Cell Sci ; 125(Pt 24): 6020-9, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23038771

RESUMEN

Phagocytosis is the force-dependent complex cellular process by which immune cells engulf particles. Although there has been considerable progress in understanding ligand-receptor-induced actin polymerisation in pushing the membrane around the particle, significantly less is known about how localised contractile activities regulate cup closure in coordination with the actin cytoskeleton. Herein, we show that the unconventional class-I myosin, myosin 1G (Myo1G) is localised at phagocytic cups following Fcγ-receptor (FcγR) ligation in macrophages. This progressive recruitment is dependent on the activity of phosphoinositide 3-kinase and is particularly important for engulfment of large particles. Furthermore, point mutations in the conserved pleckstrin homology-like domain of Myo1G abolishes the localisation of the motor protein at phagocytic cups and inhibits engulfment downstream of FcγR. Binding of Myo1G to both F-actin and phospholipids might enable cells to transport phospholipids towards the leading edge of cups and to facilitate localised contraction for cup closure.


Asunto(s)
Miosina Tipo I/metabolismo , Fagocitosis/fisiología , Receptores de IgG/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Fagocitosis/genética
16.
Int J Biochem Cell Biol ; 43(12): 1776-81, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21907820

RESUMEN

Phagocytosis of immunoglobulin G-opsonised particles takes place via Fcγ receptor ligation, leading to uptake through an actin-dependent mechanism. Myosin regulatory light chains have previously been reported to control contractility during uptake through the Fcγ receptor. In this study, we show that p21-activated kinase 4 contributes to Fcγ receptor-mediated uptake downstream of actin cup formation by regulating phosphorylation of myosin regulatory light chain. siRNA-mediated knockdown of p21-activated kinase 4 leads to reduced myosin regulatory light chain phosphorylation at Serine 19, with a corresponding reduction in phospho-myosin regulatory right chain localised to bound immunoglobulin G-opsonised red blood cells. p21-activated kinase 4 phosphorylates myosin light chain 9 at Serine 19 in vitro and RNA interference against myosin light chain 9 implicates this isoform, but not myosin light chain 12A or 12B, in Fcγ receptor-mediated uptake. Taken together, these data indicate that p21-activated kinase 4 regulates regulatory myosin light chain phosphorylation and myosin contractility during FcγR-mediated phagocytosis.


Asunto(s)
Cadenas Ligeras de Miosina/metabolismo , Receptores de IgG/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Células Cultivadas , Macrófagos/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Cadenas Ligeras de Miosina/genética , Fagocitosis , Fosforilación , Transfección
17.
Mol Microbiol ; 80(6): 1420-38, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21488979

RESUMEN

The human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) share a unique mechanism of colonization that results from the concerted action of effector proteins translocated into the host cell by a type III secretion system (T3SS). EPEC and EHEC not only induce characteristic attaching and effacing (A/E) lesions, but also subvert multiple host cell signalling pathways during infection. Our understanding of the mechanisms by which A/E pathogens hijack host cell signalling has advanced dramatically in recent months with the identification of novel activities for many effectors. In addition to further characterization of established effectors (Tir, EspH and Map), new effectors have emerged as important mediators of virulence through activities such as mimicry of Rho guanine nucleotide exchange factors (Map and EspM), inhibition of apoptosis (NleH and NleD), interference with inflammatory signalling pathways (NleB, NleC, NleE and NleH) and phagocytosis (EspF, EspH and EspJ). The findings have highlighted the multifunctional nature of the effectors and their ability to participate in redundant, synergistic or antagonistic relationships, acting in a co-ordinated spatial and temporal manner on different host organelles and cellular pathways during infection.


Asunto(s)
Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Animales , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Transducción de Señal
18.
Cell Signal ; 21(12): 1738-47, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19628037

RESUMEN

Hepatocyte growth factor (HGF) stimulates dissociation of epithelial cells (scattering) and cell migration. Several Rho GTPases are required for HGF-induced scattering. PAK1 and PAK2 are members of the p21-activated kinase (PAK) family of serine/threonine kinases, and are activated by the Rho GTPases Rac and Cdc42. Here we investigate the contributions of PAK1 and PAK2 to HGF-induced motile response. HGF stimulates phosphorylation of PAK1 and PAK2. Knockdown of PAK1 inhibits HGF-stimulated migration and loss of cell-cell junctions in DU145 prostate carcinoma cells, whereas knockdown of PAK2 enhances loss of cell-cell junctions and increases lamellipodium extension but does not affect migration speed. On the other hand, in PC3 prostate carcinoma cells, which lack cell-cell junctions, knockdown of PAK1 or PAK2 reduces HGF-stimulated migration. PAK2 knockdown increases phosphorylation of PAK1, indicating that PAK2 provides a negative feedback on PAK1. We hypothesise that PAK2 acts in part via PAK1 to regulate HGF-induced scattering.


Asunto(s)
Carcinoma/enzimología , Movimiento Celular , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias de la Próstata/enzimología , Quinasas p21 Activadas/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Uniones Intercelulares/metabolismo , Masculino , Fosforilación , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...